CYNK
WYBRANE ASPEKTY CHEMICZNE, ANALITYCZNE I BIOCHEMICZNE

Kamil Jurowski
Anna Jurowska
Wojciech Piekoszewski
KAMIL JUROWSKI
ANNA JUROWSKA
WOJCIECH PIEKOSZEWSKI

CYNK
WYBRANE ASPEKTY CHEMICZNE, ANALITYCZNE I BIOCHEMICZNE

wydawnictwo

Scientiae et Didactics

Kraków, 2015

ISBN 978-83-941637-5-4
Tytuł: Cynn • wybrane aspekty chemiczne, analityczne i biochemiczne

Copyright © 2015 by Scientiae et Didactics

Wszystkie prawa zastrzeżone. Książka jest dziełem twórców i wydawcy. Książka ani jej część nie może być przedrukowywana ani w żaden sposób reprodukowana lub odczytywana w środkach masowego przekazu bez pisemnej zgody wydawnictwa Scientiae et Didactics oraz wszystkich Autorów. Utwór w całości ani we fragmentach nie może być powielany ani rozpowszechniany za pomocą urządzeń elektronicznych, mechanicznych,kopijujących, nagrywających i innych, w tym również nie może być umieszczany ani rozpowszechniany w postaci cyfrowej zarówno w Internecie, jak i w sieciach lokalnych oraz nie może być stosowany do celów dydaktycznych (instrukcje do ćwiczeń, slajdy do wykładów itp.) bez pisemnej zgody wszystkich posiadaczy praw autorskich (wydawnictwa Scientiae et Didactics i wszystkich autorów). Monografia ta przeznaczona jest wyłącznie na użytkę osób przygotowujących się do zajęć dydaktycznych w ramach przedstawionych zagadnień. Monografia może być pobierana zarówno ze strony wydawnictwa jak i innych źródeł wskazanych przez Autorów. Każde wykorzystanie fragmentu monografii musi być w odpowiednio widoczny i czytelny sposób wyeksponowane za pomocą cytowania, np.:

K. Jurowski, A. Jurowska, W. Piekoszewski

Cynn • wybrane aspekty chemiczne, analityczne i biochemiczne

Wydanie I w języku polskim

Redakcja, skład i korekta: Scientiae et Didactics

Recenzent: prof. dr hab. Gabriel Nowak

Projekt okładki i opracowanie graficzne: Scientiae et Didactics

Wydawnictwo Scientiae et Didactics, Kraków, 2015

ISBN 978-83-941637-5-4

W swoim dorobku posiada cztery publikacje z listy filadelfijskiej dotyczące metodyki oraz strategii kalibracyjnych w przypadku zastosowania metody LA ICP-MS w badaniach dotyczących obrazowania/mapowania metali w próbkach biologicznych (tkanki), jest współautorem wielu wystąpień konferencyjnych dotyczących tej metody analitycznej. Od początku studiów doktoranckich jest stypendystą Konsorcjum „KNOW” (Krajowy Narodowy Ośrodek Wiodący) im. Mariana Smoluchowskiego w Krakowie. Członek Polskiego Towarzystwa Chemicznego oraz Polskiego Towarzystwa Spektrometrii Mas.

W swojej pracy naukowej zajmuje się syntezą i charakterystyką fizyko-chemiczną kompleksów metali d-elektronowych z dendrymetrycznymi ligandami opartymi na strukturze triazyny. Od początku studiów doktoranckich jest stypendystką Konsorcjum „KNOW” (Krajowy Narodowy Ośrodek Wiodący) im. Mariana Smoluchowskiego w Krakowie. Jest autorką czterech publikacji z listy filadelfijskiej i kilkunastu wystąpień na konferencjach krajowych oraz międzynarodowych.
Profesor nauk medycznych, specjalista toksykolog – absolwent Akademii Medycznej w Krakowie. Jeden z najwybitniejszych dydaktyków i naukowców w zakresie toksykologii oraz analityki toksykologicznej i farmaceutycznej w Polsce. Obecnie wykładowca toksykologii sądowej, toksykologii klinicznej, ekotoksykologii, toksykologii ogólnej, analizy farmaceutycznej i spektrometrii mas na Wydziale Chemii Uniwersytetu Jagiellońskiego w Krakowie. Wybitny autor wielu publikacji z listy filadelfijskiej dotyczących zagadnień związanych z dystrybcją i rolą metali (w tym cynku) w różnych materiałach biologicznych (mózg, włosy, paznokcie,) badanych za pomocą analitycznych technik mapowania oraz obrazowania.
SPIS TREŚCI

WSTĘP ... 8
1. Cynk jako pierwiastek ... 9
2. Związki chemiczne cynku .. 30
3. Analiza jakościowa cynku .. 54
4. Analiza ilościowa cynku .. 69
5. Funkcja fizjologiczna cynku .. 88
6. Losy cynku w organizmie .. 115
7. Źródła cynku i jego niedobór ... 134
8. Toksyczność cynku .. 148
9. Rola cynku w depresji ... 168
10. Bibliografia ... 186
Niewątpliwie cynk jest wszechobecnym, niezbędnym do życia pierwiastkiem śladowym, gdyż pełni wiele istotnych ról. Jest zaraz po żelazie, najobficiej występującym w organizmie metalem przejściowym. Z drugiej strony jest to pierwiastek posiadający szczególne właściwości chemiczne, i biologiczne, a jego znaczenie jest obecnie bardzo ważnym zagadnieniem zarówno w chemii – cynk metaliczny jak i jego związki, w biochemii – z uwagi na mnogość pełnionych ról, jak również w chemii analitycznej, gdzie opracowanych jest wiele metod identyfikacji oraz oznaczania tego pierwiastka.

Celem monografii jest ukazanie cynku z różnych punktów widzenia – chemików nieorganików, biochemików oraz chemików analityków.
Cynk jako pierwiastek

1.1. Cynk – charakterystyka atomowa

Symbol: Zn
Stopień utlenienia: II
Liczba atomowa: 30
Masa atomowa: 65,38 u
Promień atomowy: 133,2 pm
Promień jonowy (Zn$^{2+}$, LK = 6): 74 pm
Konfiguracja elektronowa: KL 3s2 3p6 3d10 4s2
Izotopy: 64Zn (48,9%), 66Zn (27,8%), 70Zn (4,1%),
 68Zn (18,6%), 70Zn (0,6%)
1.2. Cynk – występowanie

Cynk (łac. *zincum*, niem. *zink*) jest dość rozpowszechnionym pierwiastkiem, zbliżonym (jeśli chodzi o zawartość w skorupie ziemskiej - ok. 120 g/t) do miedzi. Stanowi 0,007% skorupy ziemskiej i zajmuje 22 miejsce wśród wszystkich pierwiastków pod względem rozpowszechnienia. Cynk występuje w przyrodzie głównie w postaci siarczku cynku (*ZnS*) oraz węglanu cynku (*Na₂CO₃*). Metal ten tworzy minerały tlenkowe i krzemianowe, z których najważniejsze to:

- Sfaleryt (blenda cynkowa), *ZnS* (regularny)
- Wurcyt *ZnS* (heksagonalny)
- Galman, Smitsonit, *ZnCO₃*
- Wilemit, *Zn₂SiO₄*
- Cynkit, *ZnO*
- Hemimorfit, Kalamint, *Zn(OH)₂Si₂O₇·H₂O*

W zasadzie wszystkie znane rudy cynku zawierają kadm, który jest bardzo zbliżony do niego pod względem chemicznym. Najważniejsze poznane złoża rud tego pierwiastka znajdują się w USA, Kanadzie, Meksyku, Australii, Rosji. W Polsce bogate złoża cynku występują w Zagłębiu Kruszcowym, obejmującym rejon pomiędzy

Chrzanowem i Olkuszem a Bytomiem. Największymi producentami rud cynku w Polsce są kopalnie w Olkuszu i Lubiążu.

1.3. Cynk – właściwości fizyczne

Barwa: niebieskawobiała, błyszcząca
Temperatura topnienia: 692,677 K
Temperatura wrzenia: 1180 K
Gęstość: 7,133 g·cm⁻³

Cynk jest niebieskawobiałym, błyszczącym metalem – rysunek 1.1, który w stanie bardzo czystym charakteryzuje się ciągłością i kowalnością, dający się walcować, spawać, lutować i odlewać w przedziale temperatur od 100 °C do 150 °C.

W atmosferze powietrza pokrywa się cienką warstewką tlenku, co powoduje, że jego powierzchnia traci połysk – podobnie jak glin, ulega pasywacji. Podczas ogrzewania na powietrzu lub podczas przesypywania drobno sproszkowanej jego postaci, cynk spala się zielonym płomieniem, tworząc przy tym biały dym tlenku cynku (ZnO).
Rysunek. 1.1. Metaliczny cynk (zdjęcie autorskie).

Zanieczyszczenia (głównie żelazo), powodują, że jest dość kruchy. W przedziale temperatur 100 - 150 °C daje się łatwo walcować i wyciągać w druty. W temperaturze ponad 200 °C metal ten staje się ponownie kruchy i można go łatwo zmielić na proszek.

Cynk tworzy kryształy o sieci heksagonalnej, przy czym jego struktura odbiega od idealnego ułożenia, bowiem jest rozciągnięta wzdłuż osi c.
1.4. Cynk – otrzymywanie

W postaci stopu z miedzią – mosiądzu, metal ten jest znany od starożytności. Najstarsze jego złoża znaleziono ponad 3000 lat temu. Został odkryty prawdopodobnie w Indiach lub Chinach przed 1500 rokiem p.n.e, a do Europy metal ten zawędrował dopiero w XVII wieku. Ze względu na dużą lotność cynku, otrzymanie czystego metalu było początkowo trudne, proces ten udało się zrealizować dopiero w średniowieczu – w czasach cesarza Augusta (20 r. p.n.e. – 14 r. n.e.) w starożytnym Rzymie.

Obecnie cynk otrzymywany jest z rud metodą pirometalurgiczną oraz metodą hydrometalurgiczną. W pierwszej metodzie siarczek cynku przeprowadza się w tlenek cynku na drodze prażenia w strumieniu powietrza (1100 – 1250 K). Następnie, rudy cynku, po wzbogaceniu przez flotację, przekształca się przez prażenie w tlenek:

\[
2 \text{ZnS} + 3 \text{O}_2 \rightarrow 2 \text{ZnO} + 2 \text{SO}_2
\]

\[
\text{ZnCO}_3 \rightarrow \text{ZnO} + \text{CO}_2
\]

W kolejnym etapie z tlenku otrzymuje się metal metodą termiczną lub elektrolityczną. Różnorodne metody termiczne związane są z zastosowaniem tlenku węgla(II) w temp. ok. 1100°C, gdzie CO odgrywa istotną rolę jako przejściowo utworzony reduktor:
ZnO + C → CO + Zn

ZnO + CO → Zn + CO₂

Cynk oddestylowuje wraz z CO₂ i ulega kondensacji. Z uwagi na to, że podczas kondensacji cynk częściowo ponownie reaguje z CO₂, tworząc tlenek cynku, stosuje się nadmiar węgla, by zgodnie z równowagą Boudouarda zmniejszyć zawartość CO₂ w gazie odlotowym, lub oziębiać parę cynku przez spryskiwanie ciekłym ołowiem.

W ten sposób otrzymuje się cynk hutniczy (czystość ok. 98%), który zawiera jako główne zanieczyszczenia kadm oraz ołów. Z uwagi na to, że temperatury wrzenia tych metali są dostatecznie oddalone od siebie (Pb – 1740 °C, Zn – 906 °C, Cd – 765 °C), wykorzystuje się rektyfikację, w wyniku której można łatwo otrzymać cynk o czystości rzędu 99,99%. Z drugiej strony, zastosowanie destylacji do oczyszczania cynku, stanowi dość rzadki przypadek w metalurgii, ponieważ główny problem stanowią istotne straty metalu w stosowanych temperaturach.

W nowszej metodzie, zastosowanej przez Imperial Smelting Company w Bristolu, trudność związana z utlenianiem otrzymywanego cynku do tlenku cynku (ZnO) pod wpływem tlenku węgla(IV), została wyelimirowana poprzez wprowadzenie gorących par tego metalu do komory, do której wtryskiwany jest stopiony ołów w temp. ok. 1093,15 °C (temperatura topnienia ołowiu – 873,75 °C). Cynk w takich warunkach charakteryzuje się dobrą rozpuszczalnością w ołowiu.
i rozpuszcza się w jego kroplach, zanim jeszcze zdąży się utlenić. Następnie roztwór cynku w ołowiu zbiera się w komorze o temperaturze nieco wyższej od temperatury krzepnięcia ołowiu, w której rozpuszczalność Zn jest już bardzo mała i stop rozbliżona się na dwie fazy ciekłe. Faza cynkowa jest odprowadzana jako produkt o czystości 99%, a faza ołowiu powraca do obiegu. Cynk o czystości 99,99% można uzyskać metodą frakcyjnej destylacji próżniowej, która pozwala także na otrzymywanie kadmu zwykle zanieczyszczającego cynk.

Jednak cynk w większości (ok. 80%) otrzymuje się na drodze elektrolizy. W pierwszym etapie, na skutek procesu prażenia, gromadzi się tlenek cynku (ZnO) lub jego ruda, którą rozpuszcza się w stężonym kwasie siarkowym(VI). Zanieczyszczenia, stanowiące szlachetniejsze od cynku metale (np. kadm), strąca się z roztworu przez wprostowanie pyłu cynkowego. W metodzie Kussa, proces elektrolizy prowadzi się pod napięciem ok. 3,5 V, gdzie na anodzie wykonanej z ołowiu wydziela się tlen, z kolei na katodzie wykonanej z glinu lub rtęci osadza się cynk o czystości 99,95%. Generalnie, opłacalność tej metody zależy głównie od kosztu zużywanej w dość dużych ilościach energii elektrycznej (~ 3,2 MW·h / 1t Zn). Przewaga tej metody nad metodą termiczną związana jest z możliwością zastosowania również uboższych rud, których rodzaj nie ma znaczenia. Co, więcej straty cynku są bardzo małe, a otrzymywanie metali towarzyszących nie nastręcza większych trudności.

Innym przykładem otrzymywania cynku jest przeróbka rud cynkowych na drodze mokrej, co jest poprzedzone...
prażeniem rud siarczkowych. Proces ten odbywa się jednak w temperaturach niższych (ok. 1223,15 °C) niż w procesie pirometalurgicznym. W tego typu warunkach część rudy przechodzi w tlenek cynku, a część w siarczan(VI) cynku. Wyprażony materiał wyługowuje się za pomocą rozcieńczonego kwasu siarkowego(VI), a roztwór poddaje elektrolizie, podczas której na katodzie wydziela się cynk, a na anodzie tlen. Całokształt opisanych procesów można sprowadzić do równania:

\[2 \text{ZnSO}_4 + 2 \text{H}_2\text{O} \rightarrow 2 \text{Zn} + \text{O}_2 + 2 \text{H}_2\text{SO}_4 \]

Z przedstawionego wyżej równania reakcji chemicznej wynika, że w trakcie elektrolizy możliwe jest odzyskanie kwasu siarkowego(VI). Z uwagi jednak na różne procesy uboczne, które nasilają się wraz ze zmianą składu elektrolitu, elektroliza jest przerywana przed całkowitym wydzieleniem się cynku. Z kolei elektrolit zostaje użyty ponownie do wytrawiania wyprażonej rudy. W porównaniu do procesu pirometalurgicznego, proces hydrometalurgiczny dostarcza metal o większej czystości i który jest bardziej ekonomiczny.

Biorąc pod uwagę warunki fizykochemiczne wydzielenia cynku z roztworu wodnego przy zastosowaniu elektrolizy, należy zwrócić uwagę na to, że podczas elektrolizy wodnego roztworu ZnSO\(_4\) na katodzie de facto najpierw powinien wydzielać się wodór (z uwagi na fakt, że wodór wykazuje wyższy potencjał standardowy niż cynk). Jednakże wydzielenie się wodoru na niektórych metalach (np. Zn), następuje dopiero po przyłożeniu
wyższych napięć, niż wynika to z położenia wodoru w szeregu napięciowym metali.

1.5. Cynk – reakcje chemiczne

Cynk charakteryzuje się potencjałem standardowym $E^\circ = -0,76$ V i jest metalem mało szlachetnym. W temperaturze pokojowej jest odporny na działanie powietrza, tlenu, wody, fluorowców, fluorowcowodorów i siarkowodoru, na skutek tworzenia ochronnych warstewek tlenku, węglanu, siarczku lub halogenków. Z kolei ulega reakcji w powietrzu zawierającym SO$_2$.

Cynk łatwo roztwarza się w kwasach, chociaż w rozcieńczonych kwasach takich jak: chlorowodorowy, czy siarkowy(VI) proces ten zachodzi dość wolno, ponieważ wodór ma na cynku duże nadnapięcie (około -0,8 V). Bardzo ważne znaczenie w zwiększaniu szybkości roztwarzania się cynku ma zawartość domieszek szlachetniejszych od cynku metali (np. miedzi) albo dodanie soli Cu$^{2+}$, Ni$^{2+}$, Co$^{2+}$ - cynk wówczas roztwarza się w kwasach natychmiast. Dzieje się tak dlatego, iż powstają mikroogniwa lokalne, które obniżają nadnapięcie – cynk jak metal mniej szlachetny pełni rolę anody, a inne metale stanowią katodę.

Cynk w roztworach wodorotlenków litowców roztwarza się dość łatwo (lecz powoli) z wydzieleniem wodoru, przy czym powstają hydroksokompleksy: $[\text{Zn(OH)}_3]^-$ lub $[\text{ZnOH})_4]^{2-}$, np.
Zn + 2 OH⁻ + 2 H₂O → [Zn(OH)₄]²⁻ + H₂
tetrahydroksocynkan

1.6. Cynk – zastosowanie

Cynk jest bardzo ważnym metalem użytkowym, który posiada wiele zastosowań:

- w postaci czystego metalu;
- do wytwarzania powłok ochronnych na wyrobach żelaznych i stalowych;
- jako składnik licznych stopów – cynk w ilości < 50% wchodzi w skład mosiądzu i nowego srebra (alpaki), a w ilości > 90%, z domieszkami niewielkich ilości Cu, Al i Mg – w skład stopów cynkowych, stopów do przeróbki plastycznej i stopów na odlewy ciśnieniowe.

Pospolitym przykładem zastosowania cynku w życiu codziennym są blachy cynkowe do wyrobu dachów, rynien, wiader oraz baterii suchych ogniw. Ponadto, konstrukcje stalowe zabezpiecza się przed korozją za pomocą tzw. anod cynkowych, których zasada działania opiera się na zasadzie ogniwa lokalnego. Przez nałożenie powłoki ochronnej z cynku zabezpiecza się skutecznie części żelazne przed korozją. Ponieważ cynk jest w tym przypadku metalem mniej szlachetnym, takie powłoki ochronne mają istotną przewagę nad powłokami z cyny, niklu lub chromu. Trzy wymienione metale są
szlachetniejsze od żelaza. Uszkodzenie powłoki ochronnej prowadzi w tych przypadkach do utworzenia ogniwa lokalnego i wzmożonej korozji, znajdującego się pod powłoką mniej szlachetnego żelaza, podczas gdy w przypadku powłoki cynkowej korozji ulega najpierw cynk. Cynkowe powłoki ochronne można wytwarzać w różny sposób: przez krótkotrwałe zanurzenie przedmiotu w ciekłym cynku (cynkowanie ogniowe), elektrolitycznie, przez pokrycie przedmiotu ciekłym cynkiem lub pyłem cynkowym, a następnie ogrzanie przedmiotu do temperatury nieznacznie niższej od temperatury topnienia. Można stosować również farby bogate w pył cynkowy (szarzeń cynkową). We wszystkich przypadkach powłoka cynkowa wiąże się częściowo z podłożem żelaznym, jest więc bardzo trwała.

Jeśli chodzi o cynkowanie to można wyróżnić:

- **cynkowanie ogniowe** – oczyszczony i wytrawiony przedmiot stalowy przeciąga się najpierw przez stop chlorku cynku i chlorku amonu, rozpuszczający tlenki, następnie zanurza się w stopie cynkowym;

- **cynkowanie galwaniczne** – na anodach cynkowych w elektrolitach zawierających: cynkan, cyjanocynkan, wodorotlenek i cyjanek sodu; jako wybłyszczacze stosowane są heliotropina lub wanilina;

- **cynkowanie dyfuzyjne** (tzw. szerardyzacja) – ogrzewanie w sproszkowanym cynku;
- **cynkowanie natyskowe** – natryskiwanie stopionym cynkiem.

Ponadto, cynk w postaci pyłu jest używany w dość dużych ilościach jako reduktor zarówno w metalurgii do otrzymywania metali szlachetnych (Au, Ag, Cd), jak i w chemii organicznej.

1.7. Cynk - znaczenia cynku dla społeczeństwa

Rozwój nowoczesnych technologii jest możliwy z uwagi na różnorodne właściwości cynku. Jednym z najważniejszych ról tego pierwiastka jest rola ochronna, w tym zdolność ochrony stali przed korozją, co jest szacowane w formie wymiernych wyników finansowych. Tego typu możliwości wykorzystuje się do zabezpieczania budynków, samochodów, statków, czy stalowych konstrukcji przed działaniem atmosfery, wody oraz gleby. Warto zwrócić uwagę na fakt, iż zjawisko korozji w skali globalnej powoduje utratę 4% narodowego produktu brutto USA.

Bardzo ważnym zastosowaniem cynku jest ochrona środowiska przed wydzielaniem toksycznych gazów, ponieważ w miejscu malowania, w celu zabezpieczenia przed korozją, stosowany jest proces galwanizacji.

Ponadto, stopy cynku z różnymi metalami mają ogromne znaczenie (np. stop cynku z miedzią to mosiądz) w konstrukcjach różnych urządzeń elektrycznych i budynków. Szacuje się, że dodatek cynku do
wytwarzanego konkretnie produktu powoduje przedłużenie jego trwałości 25 - 50 lat.

Ekspansyjny rozwój komputeryzacji i szybkiego przekazywania informacji jest również uwarunkowany wykorzystaniem cynku w częściach elektronicznych.

Bardzo ważnym problemem w ochronie środowiska są zmniejszające się zasoby rud cynku. Jednym z rozwiązań jest zwiększenie odzyskiwania cynku z odpadów (tzw. recykling), gdzie 30% używanego cynku pochodzi z „makulatury”, co odpowiada ogółem 80% dostępnego do odzyskania cynku.

1.8. Pytania kontrolne

1. Zapisz konfigurację atomu cynku w stanie podstawowym.

2. Zapisz konfigurację jonu cynku Zn^{2+}.

3. Podaj cztery izotopy cynku.

4. Wyjaśnij etymologię nazwy cynku.

5. Podaj zawartość cynku w skorupie ziemskiej.

6. Wymień cztery minerały cynku.

7. Podaj nazwy państw, w których występują największe złoża cynku.

8. Podaj nazwy rejonów geograficznych, w których występują złoża cynku w Polsce.
9. Wymień kopalnie, w których pozyskuje się cynk w Polsce.
10. Opisz właściwości fizyczne cynku.
11. Czy cynk ulega pasywacji?
12. Czy cynk ulega korozji?
13. Scharakteryzuj sieć krystaliczną cynku.
15. Opisz współczesną metodę otrzymywania cynku.
16. Opisz metodę otrzymywania cynku opracowaną przez Imperial Smelting Company w Bristolu.
17. Opisz elektrochemiczną metodę otrzymywania cynku.
18. Opisz właściwości chemiczne cynku względem kwasów oraz zasad.
20. Opisz znaczenie cynku dla gospodarki.

1.9. Bibliografia i literatura uzupełniająca

JAROSIŃSKI, ANDRZEJ; MADEJSKA, LUCYNA. Kompleksowe wykorzystanie surowców powstałych w wyniku procesu pozyskiwania koncentratów cynku. GOSPODARKA SUROWCAMI MINERALNYMI, 2008, 24.

MACIEJNY, Adolf. Metale i stopy metaliczne oraz ich wpływ na rozwój inżynierii materiałowej w Polsce.

PIĄTKOWSKI, J.; BINCZYK, F. Właściwości i zastosowanie odlewniczych stopów Mg-Al. Archives of Foundry, 2002, 2.4

STRZYSZCZ, Z. Właściwości fizyczne, fizykochemiczne i chemiczne odpadów poflotacyjnych rud cynku i ołowiu

WALEWSKA-RIESENKAMPF, W. Zastosowanie amoniakalnej metody ługowania do przeróbki krajowych rud galmanowych o niskiej zawartości cynku. Prace IH, 1959, 1 s 118.

Związki chemiczne cynku

2.1. Informacje wstępne

Największe znaczenie techniczne mają jak dotąd tylko związki Zn(II), co prawda istnieją związki Zn(I), ale nie mają one żadnych zastosowań praktycznych. Z kolei w stopionym chlorku cynku (ZnCl\(_2\)) można rozpuścić nawet do 2% metalicznego cynku, a w wyniku oziębienia tego roztworu otrzymuje się żółtą, szklistą substancję stałą. Różne badania spektroskopowe dowodzą na występowanie w zakrzepniętej masie jonów Zn\(_2^{2+}\). Po rozpuszczeniu w wodzie dochodzi do dysproporcjonowania i wydzielenia cynku. Jednakże w stężonym roztworze chlorku cynku, jony Zn\(^+\) są trwalsze i można je zidentyfikować także metodą spektroskopii ramanowskiej.

Sole Zn(II) są w większości łatwo rozpuszczalne; roztwory wykazują słaby odczyn kwasowy, ponieważ jon
[Zn(H₂O)₆]²⁺ jest kwasem Bröнстeda, porównywalnym, jeżeli chodzi o moc, z jonem NH₄⁺ (pKₐ = 9,6). Poniżej przedstawiono charakterystykę wybranych nieorganicznych związków cynku(II).

2.2. Związki cynku z fluorowcami

2.2.1. Ogólna charakterystyka halogenków cynku

ZnF₂ tworzy kryształy o sieci rutylu, z kolei w innych halogenkach jony Zn²⁺ obsadzają tetraedryczne przestrzenie międzywęzłowe w regularnej sieci anionowej o najgęstszym ułożeniu.

Sole cynku(II) z fluorowcami (czyli potocznie – halogenki) posiadają charakter kowalencyjny. Charakter ten szczególnie widać patrząc przez pryzmat temperatur topnienia i wrzenia, które dla ZnF₂ są znacznie wyższe niż dla innych halogenków – tabela 2.1.

Tabela 2.1. Właściwości fizyczne halogenków cynku.

<table>
<thead>
<tr>
<th>Związek</th>
<th>T_{topnienia} [°C]</th>
<th>T_{wrzenia} [°C]</th>
<th>Rozpuszczalność w wodzie w temp. 25 °C [mol·L⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnF₂</td>
<td>872</td>
<td>1502</td>
<td>0,16</td>
</tr>
<tr>
<td>ZnCl₂</td>
<td>275</td>
<td>756</td>
<td>31,7</td>
</tr>
<tr>
<td>ZnBr₂</td>
<td>394</td>
<td>697</td>
<td>20,9</td>
</tr>
<tr>
<td>ZnI₂</td>
<td>446</td>
<td>rozkład > 625</td>
<td>13,5</td>
</tr>
</tbody>
</table>

2 Za wyjątkiem fluorku cynku – ZnF₂.
Podobne zależności można zauważyć dla halogenków cynku w rozpuszczalnikach organicznych – alkoholu etylowym, eterze, czy acetonie. Rozpuszczalność halogenków cynku w wodzie jest dość dobra – tabela 2.1., co można wytłumaczyć powstawaniem kompleksów halogenkowych. W stężonych roztworach (silny odczyn kwasowy), występują uwodnione indywidua: Zn²⁺, ZnX⁺, ZnX₂, Zn₃⁻ i Zn₄²⁻ (X = Cl, Br, I).

Chlorek cynku oraz bromek cynku po stopieniu dobrze przewodzą prąd elektryczny, co jest również uwarunkowane jonotropią i powstawaniem kompleksów halogenkowych.

2.2.2. Metody otrzymywania halogenków cynku

Jedną z metod otrzymywania halogenków cynku jest roztwarzanie metalu lub węglanu cynku (ZnCO₃) w wodnym roztworze kwasu fluorowcowodorowego:

\[
\begin{align*}
\text{Zn} + 2 \text{HX}^{(aq)} & \rightarrow \text{ZnX}_2 + \text{H}_2 \\
\text{ZnCO}_3 + 2 \text{HX}^{(aq)} & \rightarrow \text{ZnX}_2 + \text{H}_2\text{O} + \text{CO}_2 \\
&(X = \text{F, Cl, Br, I})
\end{align*}
\]

Halogenki cynku są bardzo higroskopijne, stąd powstają zazwyczaj hydraty, które odwadnia się następnie w strumieniu fluorowcowodoru, w przeciwnym bowiem wypadku mogą powstawać sole złożone, np. Zn(OH)Cl.

Związek tego typu można także otrzymywać z pierwiastków na drodze prostej syntezy chemicznej. Jednakże z uwagi na fakt pasywacji, konieczne jest
prowadzenie reakcji w temperaturze wyższej od temperatury topnienia halogenku:

\[
Zn + X_2 \rightarrow ZnX_2 \\
(X = F, Cl, Br, I)
\]

Należy zwrócić uwagę, iż halogenki cynku tworzą z halogenkami litowców i berylowców odpowiednie sole kompleksowe \(M^I\text{ZnX}_3\) i \(M^{II}\text{ZnX}_4\) (\(X = F, Cl, Br\)), które można łatwo wyizolować z roztworu wodnego.

2.2.3. Zastosowanie halogenków cynku

Fluorek cynku stosuje się jako dodatek do emalii, z kolei \(\text{ZnF}_2\) i \(\text{ZnCl}_2\) stosowane są jako środek do impregnacji drewna.

Chlorek cynku posiada dość silną higroskopijność i jest używany w chemii organicznej do osuszania z wody, jak również kiedyś był stosowany jako zaprawa w przemyśle włókienniczym oraz jako aktywator w procesie wytwarzania węgla aktywnego. Przygotowywana z cynku i kwasu solnego tzw. *woda lutownicza* zawiera chlorek cynku. Z kolei stężony roztwór mieszany chlorku i tlenku cynku (\(\text{ZnO}\)) oraz kwasu fosforowego(V) (\(\text{H}_3\text{PO}_4\)) bardzo szybko tężeje, tworząc stały, twardy cement, stosowany w dentystyce jako wypełnienie (tzw. fleczer). Ponadto chlorek cynku stosowany jest jako topnik w procesie cynkowania i cynnowania ogniowego.
2.3. Związki cynku z tlenem

2.3.1. Tlenek cynku - ZnO

2.3.1.1. Ogólna charakterystyka

Tlenek cynku to biały, puszysty proszek, który po ogrzaniu żółknie, a po ostudzeniu ponownie przyjmuje białe zabarwienie. Sublimuje w temperaturze powyżej 1700 °C.

2.3.1.2. Otrzymywanie tlenku cynku

Tlenek cynku (ZnO) otrzymać można przez odwodnienie wodorotlenku cynku - Zn(OH)$_2$, jak również przez termiczny rozkład węglanu cynku – ZnCO$_3$, azotanu(V) – Zn(NO$_3$)$_2$ oraz szczawianu – ZnC$_2$O$_4$. Zwykle jednak ZnO otrzymuje się przez spalenie pary cynku w powietrzu.

2.3.1.3. Reakcje tlenku cynku

W temperaturze ponad 300 °C tlenek cynku reaguje z siarkowodorem – H$_2$S, tworząc siarczek cynku (ZnS). Należy zauważyć, iż reakcję tę wykorzystuje się w przemyśle do usuwania śladów H$_2$S z gazu do katalitycznej syntezy amoniaku - NH$_3$ oraz metanolu z uwagi na fakt, iż siarkowodór stanowi truciznę dla stosowanych w tym procesie katalizatorów.

Tlenek cynku reaguje również z tlenkiem siarki(IV) już
w temperaturze pokojowej, dając siarczan(IV) cynku:

\[\text{ZnO} + \text{SO}_2 \rightarrow \text{ZnSO}_4 \]

Powyższą reakcją tłumaczyć można silną korozją blach cynkowych w powietrzu, zawierającym duże ilości SO\(_2\), co w konsekwencji powoduje zniszczenie powierzchniowej warstewki ochronnej tlenku cynku.

Ogrzewany tlenek cynku zmienia swoją barwę odwracalnie w temp. > 425°C na żółtą, co można wytłumaczyć powstawaniem defektów sieciowych. Analogicznie zabarwienia (żółte, zielone lub czerwone) powstają również w wyniku domieszkowania metalicznym cynkiem - w procesie tym atomy cynku obsadzają oktaedryczne luki w sieci.

W wyniku ogrzewania do temperatury > 1000°C, ZnO tworzy z wieloma innymi tlenkami metali, tlenki podwójne. W szczególności tlenki typu - Zn\(_2\)TiO\(_4\) i ZnM\(_{III}\)\(_2\)O\(_4\) (gdzie M = Al, Co, Cr, Fe, Ga, Mn, Sb, V) mają struktury spineli lub odwróconych spineli.

2.3.1.4. Zastosowanie tlenku cynku

Tlenek cynku stosowany jest jako dodatek do gumy, jako pigment farb malarskich (biel cynkowa), a także w przemyśle ceramicznym i jako składnik emalii. Z kolei w przemyśle chemicznym związek ten jest stosowany jako katalizator procesu odwodornienia alkoholi do ketonów (acetonu, cykloheksanu).

W medycynie stosowany jest tlenek oraz nadtlenek
cynku z uwagi na ich ściągające i słabo antyseptyczne działanie, do wyrobu pudrów i maści (np. maści cynkowej).

Niekóre z mieszanych tlenków znalazły zastosowanie przemysłowe – np. ZnCr₂O₄, domieszkowany z innymi tlenkami metali, posiada zastosowanie jako katalizator w procesie syntety metanolu z mieszaniny CO i H₂ w temp. 350-400°C i pod ciśnieniem 20 MPa.

Bardzo duże znaczenie mają również właściwości magnetyczne tlenków mieszanych, zawierających żelazo na różnych stopniach utlenienia (tzw. ferromagnetyki). Materiały tego typu - materiały ceramiczne zwane ferrytami, są stosowane m.in. do wyrobu rdzeni cewek w technice wielkiej częstotliwości.

2.3.2. Wodorotlenek cynku – Zn(OH)₂

2.3.2.1. Ogólna charakterystyka

Wodorotlenek cynku to biały szlamowaty osad, który zawiera więcej związanej wody niż wynika ze wzoru sumarycznego, stąd lepiej jest określać go jako uwodniony tlenek cynku. Posiada charakter amfoteryczny.

2.3.2.2. Otrzymywanie wodorotlenku cynku

Wodorotlenek cynku można w prosty sposób otrzymać w wyniku dodania jonów wodorotlenkowych do roztworu soli cynku(II) - strąca się wówczas trudno rozpuszczalny, biały Zn(OH)₂, przy czym w zależności od warunków strącania (wartości pH, temperatury) otrzymuje się różne
2.3.2.3. Reakcje wodorotlenku cynku

Jeśli odczynnikiem strącającym jest woda amoniakalna (NH₃·H₂O), to osad roztwarza się w jego nadmiarze, tworząc tetraaminakompleks - [Zn(NH₃)₄]²⁺. Wodorotlenek cynku roztwarza się również w stężonym lugu z utworzeniem hydroksocynkanów typu [Zn(OH)₃]⁻ lub [Zn(OH)₄]²⁻. Z roztworów takich można w dość łatwy sposób wyodrębnić odpowiednie sole, np. Na[Zn(OH)₃] · 3H₂O, Na₂[Zn(OH)₄] lub Sr₂[Zn(OH)₆].

Wodorotlenek cynku rozkłada się w temperaturze powyżej 125°C z odszczepieniem wody, tworząc biały tlenek cynku (ZnO), który reaguje z wodą w temperaturze wrzenia z utworzeniem wodorotlenku.

2.3.3. Siarczek cynku – ZnS

2.3.3.1. Ogólna charakterystyka

Czysty chemicznie siarczek cynku stanowi biały osad, a w przyrodzie występuje jako odmiana regułarna (blenda cynkowa⁳) oraz heksagonalna (wurcyt), przy czym w normalnych warunkach blenda jest odmianą trwalszą. W temperaturze wyższej od 1000 °C, ulega ona przekształceniu w wurcyt, przy czym temperatura przemiany ulega znacznemu obniżeniu w przypadku

⁳ Blenda cynkowa zanieczyszczona śladowymi ilościami radu, była stosowana przez Marię Skłodowską-Curie do otrzymania radu.
obecności kontaminacji.

2.3.3.2. Otrzymywanie siarczku cynku

Siarczek cynku otrzymuje się jako biały, trudno rozpuszczalny osad, w wyniku wprowadzenia siarkowodoru do roztworu soli cynku(II). Z uwagi na fakt, iż siarczek cynku roztwarza się ponownie w rozcieńczonych kwasach mineralnych, strączenie musi zachodzić w układzie buforowanym przy pH ≥ 3.

2.3.3.3. Właściwości i zastosowanie siarczku cynku

Siarczek cynku z siarczanem(VI) baru tworzy tzw. litopon - biały pigment w przemyśle gumowym, który otrzymuje się w wyniku reakcji siarczanu(VI) cynku – ZnSO₄ z siarczkiem baru - BaS, a następnie osad poddaje się prażeniu w temperaturze ok. 700°C:

\[
\text{ZnSO}_4 + \text{BaS} \rightarrow \text{ZnS} + \text{BaSO}_4
\]

Litopon nie jest trujący (w przeciwieństwie do często stosowanej bieli ołowianej – PbSO₄) i nie ciemnieje pod działaniem siarkowodoru. Należy zauważyć, iż mniejsza jest jego odporność na światło, ponieważ siarczek cynku rozkłada się pod wpływem nadfioletu z wydzieleniem cynku. Fotolizie można jednak zapobiec, dodając niewielkie ilości soli kobaltu.

Jeśli siarczek cynku naświetli się promieniowaniem wysokoenergetycznym (nadfioletowym, rentgenowskim,
katodowym, γ), to emituje on światło widzialne, przy czym efekt ten zwiększa się w przypadku domieszkowania (ok. 1:10⁴) związkami - Cu, Mn lub Ag. W związku z tym siarczek cynku znajduje szerokie zastosowanie do wytwarzania ekranów fluoryzujących (dawniej w produkcji ekranów telewizyjnych) i farb świecących.

2.3.4. Siarczan(VI) cynku – ZnSO₄

2.3.4.1. Ogólna charakterystyka

Siarczan(VI) cynku stanowi bezbarwne kryształy, zazwyczaj w formie uwodnionej, ZnSO₄ · 7H₂O.

2.3.4.2. Otrzymanie siarczanu(VI) cynku

Zazwyczaj siarczan(VI) cynku otrzymuje się przez roztworzenie złomu cynkowego w rozcieńczonym kwasie siarkowym(VI) lub ługowanie rud cynku kwasem siarkowym(VI). Z roztworu wodnego substancja ta krystalizuje w temperaturze pokojowej w postaci ZnSO₄ · 7H₂O – siarczan(VI) cynku – 1/7 woda (tzw. witriol cynkowy). W temperaturze ponad 39 °C otrzymuje się ZnSO₄ · 6H₂O – siarczan(VI) cynku – 1/6 woda, a między 60 a 100 °C wykrystalizowuje monohydrat – ZnSO₄ · H₂O, który przez ogrzewanie do temperatury wyższej niż 250°C można przekształcić w bezwodną sól.
2.3.4.3. Właściwości i zastosowanie siarczanu(VI) cynku

Substancja ta jest technicznie najważniejszą solą cynku, służącą często jako substancja wyjściowa do otrzymywania innych związków cynku.

Siarczan(VI) cynku stosuje się m.in. jako zaprawę w procesie barwienia tkanin, jako środek ognioochronny dla materiałów organicznych oraz jako odczynnik flotacyjny. Ponadto jego bezbarwne kryształy są stosowane do produkcji litoponów, jako domieszka do kąpieli strącających włókna wiskozowe oraz do galwanicznego cynkowania drutu.

2.3.5. Węglan cynku – ZnCO₃

2.3.5.1. Ogólna charakterystyka

Węglan cynku stanowi biały osad. W naturze występuje głównie pod postacią minerału o nazwie Smitsonit.

2.3.5.2. Otrzymywanie węglanu cynku

Strąca się z roztworów zawierających Zn²⁺ pod wpływem wodorowęglanów litowców, z kolei strącanie za pomocą węglanów litowców powoduje powstanie hydroksowęglanów, zawartych również w tzw. „białej rdzy”.

ZnCO₃ można otrzymać również poprzez strączenie z roztworu soli cynku(II) wodorowęglanem litowca, nasycając roztwór jednocześnie tlenkiem węgla(IV).
Z kolei działanie na roztwór soli cynku obojętnymi węglanami litowców daje osad zasadowego węglanu cynku o wzorze \(-2 \text{ZnCO}_3 \cdot 3 \text{Zn(OH)}_2\).

2.3.6. Azotan(V) cynku – \(\text{Zn(NO}_3\text{)}_2\)

2.3.6.1. Ogólna charakterystyka

Azotan(V) cynku stanowi białą substancję stałą, bardzo dobrze rozpuszczalną w wodzie.

2.3.6.2. Otrzymywanie azotanu(V) cynku

Azotan(V) cynku można otrzymać z roztworu wodnego tylko w postaci hydratu (mono-, di-, tetra- lub haksahydratu). W wyniku termicznego odvodnienia powstają zasadowe azotany(V). Sól bezwodną otrzymuje się, na drodze następującej reakcji:

\[
\text{Zn} + 4 \text{N}_2\text{O}_4 (c) \rightarrow \text{Zn(NO}_3\text{)}_2 \cdot 2 \text{N}_2\text{O}_4 + 2 \text{NO}
\]

Powstający addukt rozkłada się w temp. 100 °C w próżni z utworzeniem soli bezwodnej, która sublimuje w próżni, podobnie jak odpowiednia sól miedzi.
2.3.7. Fosforan(V) cynku – Zn₃(PO₄)₂

2.3.7.1. Ogólna charakterystyka

Fosforan(V) cynku stanowi białą substancję stałą, jest bardzo trudno rozpuszczalny (pKₐ₀ = 32).

2.3.7.2. Zastosowanie fosforanu(V) cynku

Właściwość związana z trudną rozpuszczalnością wykorzystuje się do zwiększenia (przez fosforanowanie) odporności na korozję cynkowanych części metalowych. Podobnie, ZnNH₄PO₄ · 6 H₂O, który jest trudno rozpuszczalny stosuje się w analizie jakościowej i ilościowej do oznaczania cynku.

2.3.8. Chromian(VI) cynku

2.3.8.1. Ogólna charakterystyka

Chromian(VI) cynku to tzw. żółcień cynkowa, z kolei zieleń cynkowa to mieszanina żółcieni cynkowej oraz błękitu pruskiego – FeK[Fe(CN)₆].

2.4. Związki kompleksowe cynku

Cynk może tworzyć związki kompleksowe z jonami halogenkowymi, cyjankowymi oraz wieloma innymi ligandami, skoordynowanymi na ogół poprzez atomy O, N lub S. Zazwyczaj w związkach tych liczba koordynacyjna
wynosi 4, a geometria jest tetraedryczna, jednakże znane są również kompleksy o liczbach koordynacyjnych 5 i 6. Liczba koordynacyjna 5 oraz geometria zbliżona do bipiramidy trygonalnej występuje np. w kompleksach acetyloacetonianowych \([\text{Zn(acac)}_2X]\) (X = H₂O, pirydyna; acac = acetyloaceton). Z kolei wśród kompleksów o liczbie koordynacyjnej 6 i geometrii oktaedrycznej można wymienić bromek heksaaminacynku - [Zn(NH₃)₆]Br₂, lub chlorek tris(etylenodiamina)cynku – [Zn(en)₃]Cl₂. Należy zauważyć, że kompleksy te istnieją jednak tylko w stanie stałym, bowiem w roztworze wodnym występuje tylko tetraaminakompleks, [Zn(NH₃)₄]²⁺.

Dla cynku charakterystyczne jest tworzenie wielu kompleksów tetraedrycznych o mieszanych ligandach typu ZnX₂L₂ [X = Cl, Br, I, SCN; L = amina, tiomocznik, P(C₆H₅)₃], z których na przykład kompleks [Zn(SCN)₂(py)₂] ma znaczenie analityczne. Bardzo trwały tetracyjanokompleks [Zn(CN)₄]²⁻ odgrywa ważną rolę w galwanotechnice, ponieważ z roztworu soli cynku, zawierającego cyjanki, otrzymuje się szczególnie dobrze przylegające powłoki. Z kolei kompleksy cynku z ditiokarbaminianami znajdują szerokie zastosowanie jako przyspieszacze w procesie wulkanizacji kauczuku.
2.5. Pytania kontrolne

1. Czy związki cynku(I) mają znaczenie praktyczne?
2. Czy istnieją jony Zn^{2+}? Odpowiedź uzasadnij.
3. Jaki odczyn posiada większość soli cynku?
4. Scharakteryzuj sieć krystaliczną fluorku cynku.
6. Jak przedstawia się rozpuszczalność halogenków cynku w wodzie?
7. Które halogenki cynku topią się, dając możliwość przeprowadzenia elektrolizy?
8. Wymień i opisz metody otrzymywania halogenków cynku.
9. Czy halogenki cynku są higroskopijne?
10. W jakim celu podczas dehydratacji hydratów halogenków cynku stosuje się fluorowcowodory?
11. Wymień i opisz zastosowania halogenków cynku.
12. Opisz właściwości fizyczne i otrzymywanie tlenku cynku.
13. Wymień i opisz reakcje chemiczne tlenku cynku.
14. Wymień i opisz zastosowania tlenku cynku.
15. W jaki sposób można otrzymać wodorotlenek...
cynku?
16. Jakim reakcjom chemicznym ulega wodorotlenek cynku?
17. Przedstaw ogólną charakterystykę siarczku cynku.
18. W jaki sposób otrzymuje się siarczek cynku?
19. Opisz właściwości i zastosowanie siarczku cynku.
20. Przedstaw ogólną charakterystykę siarczanu(VI) cynku.
21. W jaki sposób można otrzymać siarczan(VI) cynku?
22. Opisz właściwości i otrzymywanie węglanu cynku.
23. Opisz właściwości i otrzymywanie azotanu(V) cynku.
24. Opisz właściwości i otrzymywanie fosforanu(V) cynku.
25. Opisz właściwości i otrzymywanie chromianu(VI) cynku.
27. Podaj możliwe liczby koordynacyjne w kompleksach cynku.
28. Jaką geometrię posiadają zazwyczaj kompleksy cynku?
29. Podaj przykłady kompleksów cynku, które występują tylko w postaci stałej.
2.6. Bibliografia i literatura uzupełniająca

CHISHOLM, Malcolm H.; GALLUCCI, Judith; PHOMPHRAI, Khampee. Coordination chemistry and reactivity of monomeric alkoxides and amides of magnesium and zinc supported by the diiminato ligand CH(CMeNC6H3-2, 6-iPr2) 2. A comparative study. Inorganic chemistry, 2002, 41.10: 2785-2794.

COREY, Robert B.; WYCKOFF, Ralph WG. The crystal structure of zinc hydroxide. Zeitschrift für Kristallographie-
Crystalline Materials, 1933, 86.1: 8-18.

HAASNOOT, Jaap G. Mononuclear, oligonuclear and polynuclear metal coordination compounds with 1, 2, 4-triazole derivatives as ligands. Coordination Chemistry

KOZAWA, Takahiro, et al. Effect of water vapor on the thermal decomposition process of zinc hydroxide chloride

NGUYEN, Dan-Tam; BU, Xianhui. Sodium zinc hydroxide sulfite with a novel Zn3OH geometry. Inorganic chemistry, 2006, 45.26: 10410-10412.

SAITO, Yutaka; CORDES, Marcia; NAKAMOTO, Kazuo. Metal isotope effect on metal-ligand vibrations—VIII: Far-

TESMER, Markus; SHU, Mouhai; VAHRENKAMP, Heinrich. Sulfur-rich zinc chemistry: new tris (thioimidazolyl) hydroborate ligands and their zinc complex chemistry related to the structure and function of alcohol dehydrogenase. Inorganic chemistry, 2001, 40.16: 4022-4029.

ZHAI, Quan-Guo, et al. Construction of Cd/Zn (II)-1, 2, 4-triazololate coordination complexes via changing substituents and anions. Crystal growth & design, 2006, 6.9: 2126-2135.

ZHANG, Yiping, et al. Polyoxoanion Coordination Chemistry: Synthesis and Characterization of the Heterometallic, Hexanuclear Clusters \([\{\text{Zn(bipy)}_2 \} 2\text{V}_4\text{O}_{12}]_1, [\{\text{Zn(phen)}_2 \} 2\text{V}_4\text{O}_{12}] \text{H}_2\text{O}, \text{and } [\{\text{Ni(bipy)}_2 \} 2\text{Mo}_4\text{O}_{14}].\) Inorganic chemistry, 1997, 36.10: 2159-2165.
Analiza jakościowa cynku

3.1. Charakterystyka analityczna

masa: 65,39 g·mol\(^{-1}\),
gęstość: 7,14 g·cm\(^{-3}\),
temperatura topnienia: 419 °C,
temperatura wrzenia: 907 °C

Czysty, metaliczny cynk jest niebieskawoszarym metalem, błyszczącym i kruchym w temperaturze po-kojowej. Pod wpływem wilgotnego powietrza pokrywa się białym nalotem hydroksosoli, prażony tworzy żółty tlenek ZnO (biały po ostygnięciu).

W szeregu napięciowym metal ten znajduje się między Fe i Mn, a jego potencjał standardowy wynosi -0,76 V. Cynk roztwarza się w bardzo rozcieńczonym kwasie chlorowodorowym lub siarkowym(VI), jak również
w kwasie octowym, z wydzieleniem gazowego wodoru⁴:

\[\text{Zn} + 2\text{H}^+ \rightarrow \text{Zn}^{2+} + \text{H}_2 (↑) \]

W wielu źródłach literaturowych można znaleźć różnorodne informacje na temat równań reakcji cynku z kwasem azotowym(V) w zależności od jego stężenia. Spór ten może rozwiązać kilka uogólnionych reguł, będących zbiorem obserwacji dla wielu reakcji metal-kwas azotowy(V):

- metale od litu do żelaza włącznie, reagują ze stężonym kwasem azotowym(V), dając jako produkt gazowy tlenek azotu(I);

- metale od litu do żelaza włącznie, reagują z rozcieńczonym kwasem azotowym(V), dając jako produkt gazowy azot;

- metale od litu do żelaza włącznie, reagują z bardzo rozcieńczonym kwasem azotowym(V), dając jako produkt azotan(V) amonu;

- kadm i metale szlachetne, reagują ze stężonym kwasem azotowym(V), dając jako produkt gazowy tlenek azotu(IV);

- kadm i metale szlachetne, reagują z rozcieńczonym kwasem azotowym(V), dając jako produkt gazowy

⁴ Należy zauważyć, iż rozcieńczony kwas azotowy(V) nie daje jako produkt gazowego wodoru – patrz dalej.

tlenie azotu(II).

Bazując na powyższych zasadach, cynk w zależności od stężenia kwasu może reagować w następujący sposób:

$$4 \text{Zn} + 10 \text{HNO}_3 \text{(stęż)} \rightarrow 4 \text{Zn(NO}_3)_2 + \text{N}_2\text{O} \uparrow + 5 \text{H}_2\text{O}$$

$$5 \text{Zn} + 12 \text{HNO}_3 \text{(rozc.)} \rightarrow 5 \text{Zn(NO}_3)_2 + \text{N}_2 \uparrow + 6 \text{H}_2\text{O}$$

$$4 \text{Zn} + 10 \text{HNO}_3 \text{(b.rozc.)} \rightarrow 4 \text{Zn(NO}_3)_2 + \text{NH}_4\text{NO}_3 + 3 \text{H}_2\text{O}$$

Ponieważ jednak cynk jest bardzo podobny chemicznie do kadmu (grupa 12), stąd należy również brać pod uwagę inne możliwe reakcje dla cynku, gdyby był traktowany jak kadm. Należy jednak zauważyć, że reakcje analogiczne do reakcji, jakim ulega kadm, zajdą w przypadku cynku tylko po podgrzaniu:

$$\text{Zn} + 4 \text{HNO}_3 \text{(stęż)} \rightarrow \text{Zn(NO}_3)_2 + 2 \text{NO}_2 \uparrow + 2 \text{H}_2\text{O}$$

$$3 \text{Zn} + 8 \text{HNO}_3 \text{(rozc.)} \rightarrow \text{Zn(NO}_3)_2 + 2 \text{NO} \uparrow + 4 \text{H}_2\text{O}$$

Z kolei stężony kwas siarkowy(VI) roztwarza cynk redukując się do tlenku siarki(IV):

$$\text{Zn} + 2 \text{H}_2\text{SO}_4 \rightarrow \text{Zn}^{2+} + \text{SO}_4^{2-} + \text{SO}_2 \uparrow + 2 \text{H}_2\text{O}$$

Dzięki swoim właściwościom amfoterycznym, metal ten roztwarza się również w roztworach wodorotlenków metali alkalicznych:
\[\text{Zn} + 2 \text{OH}^- \rightarrow \text{ZnO}_2^{2-} + \text{H}_2 (↑) \]

Cynk występuje w związkach wyłącznie na II stopniu utlenienia, wszystkie roztwory Zn(II) są bezbarwne.

Duże znaczenie w analizie chemicznej mają trudno rozpuszczalne sole cynku, do których można zaliczyć:

- biały siarczek (ZnS) - praktycznie nierozpuszczalny w rozcieńczonych, mocnych kwasach nieorganicznych;
- heksacyjanożelazian(II) cynku i potasu, \(\text{K}_2\text{Zn}_3[\text{Fe(CN)}_6] \);
- fosforan(V) cynku i amonu, \(\text{ZnNH}_4\text{PO}_4 \cdot 6\text{H}_2\text{O} \) - trudno rozpuszczalny w zakresie pH: 5,0 - 7,5.

Wszystkie trudno rozpuszczalne sole cynku (z wyjątkiem ZnS), roztwarzają się w roztworze wodorotlenku sodu oraz w wodzie amoniakalnej, w wyniku czego tworzą się cynkany lub kompleksy [Zn(NH\textsubscript{3})\textsubscript{4}]2+.

Cynk(II) tworzy kompleksy: amoniakalne, cyjankowe, tiocyjankowe, chlorkowe, szczawianowe i z EDTA.
3.2. Siarkowodór H₂S

Siarkowodór z roztworu zawierającego jony Zn²⁺, (w obecności kwasu octowego), wytrąca biały osad siarczku cynku - ZnS. Osad ten nie roztwarza się w kwasie octowym, ale roztwarza się w kwasach mineralnych (t.j. HNO₃, H₂SO₄, HClₐq).

Jeśli próbką jest obojętny roztwór chlorku cynku, to wprowadzenie siarkowodoru powoduje powstanie ZnS i kwasu mineralnego, a reakcja ta jest odwracalna. W celu osiągnięcia wytrącenia siarczku cynku, do roztworu dodaje się octan sodu, który zmniejsza stężenie jonów H⁺ (powstaje słabo zdysocjowany CH₃COOH) i wówczas następuje całkowite wytrącenie ZnS:

\[
\text{Zn}^{2+} + \text{H}_2\text{S} \rightarrow \text{ZnS} (\downarrow) + 2\text{H}^+ \\
\text{CH}_3\text{COO}^- + \text{H}^+ \rightarrow \text{CH}_3\text{COOH}
\]

Należy zauważyć, iż octan sodu nie umożliwia dokładnego oddzielenia cynku od innych kationów IV grupy, ponieważ NiS, CoS oraz FeS również częściowo wytrącają się w tych warunkach. Z kolei w roztworze buforu mrówczanowego (przy pH ~ 2,9) wytrąca się całkowicie wyłącznie siarczek cynku.
3.3. Siarczek amonu \((\text{NH}_4)_2\text{S}\) lub siarczek sodu \(\text{Na}_2\text{S}\)

Jony \(\text{S}^{2-}\) wytrącają z obojętnych roztworów, zawierających \(\text{Zn}^{2+}\) biały osad siarczku cynku - \(\text{ZnS}\). W takich warunkach, siarczek cynku wytrąca się w postaci zolu. Aby otrzymać żel, osad należy wytrącać na gorąco w obecności dużej ilości soli amonu – wówczas zachodzi prosta reakcja:

\[
\text{Zn}^{2+} + \text{S}^{2-} \rightarrow \text{ZnS} \downarrow
\]

3.4. Wodorotlenek sodu \(\text{NaOH}\)/wodorotlenek potasu \(\text{KOH}\)

Jony \(\text{OH}^-\) wytrącają z roztworów zawierających \(\text{Zn}^{2+}\) biały osad wodorotlenku cynku zgodnie z reakcją:

\[
\text{Zn}^{2+} + 2 \text{OH}^- \rightarrow \text{Zn(OH)_2} \downarrow
\]

Wodorotlenek ten posiada właściwości amfoteryczne – roztwarza się zatem w kwasach i w nadmiarze odczynnika z utworzeniem kompleksowego jonu cynkanowego - \([\text{Zn(OH)}_4]^{2-}\).

\[
\begin{align*}
\text{Zn(OH)_2} \downarrow + 2 \text{OH}^- & \rightarrow [\text{Zn(OH)}_4]^{2-} \\
\text{Zn(OH)_2} \downarrow + 2 \text{H}^+ & \rightarrow \text{Zn}^{2+} + 2 \text{H}_2\text{O}
\end{align*}
\]
3.5. Woda amoniakalna NH₃·H₂O

Woda amoniakalna wytrąca biały osad wodorotlenku cynku, który łatwo roztwarza się w nadmierze odczynnika z utworzeniem jonów kompleksowych [Zn(NH₃)₄]²⁺ lub [Zn(NH₃)₆]²⁺ zgodnie z reakcją⁵:

\[\text{Zn(OH)}_2(↓) + 6 \, (\text{NH}_3\cdot\text{H}_2\text{O}) \rightarrow [\text{Zn(NH}_3)_4]^{2+} + 2 \, \text{OH}^- + 6 \, \text{H}_2\text{O} \]

3.6. Wodorofosforan(V) sodu Na₂HPO₄

Wodorofosforan(V) sodu wytrąca z roztworów, zawierających jony Zn²⁺, biały osad fosforanu(V) cynku - Zn₃(PO₄)₂. Osad ten jest roztwarzalny w rozcieńczonych kwasach mineralnych, kwasie octowym oraz wodzie amoniakalnej:

\[3 \, \text{Zn}^{2+} + 2 \, \text{HPO}_4^{2-} \rightarrow \text{Zn}_3(\text{PO}_4)_2(↓) + 2\text{H}^+ \]

3.7. Cyjanek potasu KCN

Jony cyjankowe wytrącają z jonami Zn²⁺ biały osad cyjanku cynku – Zn(CN)₂. Osad ten roztwarza się w nadmierze odczynnika z utworzeniem jona kompleksowego:

\[\text{Zn}^{2+} + 2 \, \text{CN}^- \rightarrow \text{Zn(CN)}_2(↓) \]

⁵ Należy zwrócić uwagę, iż jest to reakcja umożliwiająca odróżnienie Al³⁺ od Zn²⁺.
Zn(CN)$_2$ (↓) + 2 CN$^-$ → [Zn(CN)$_4$]$^{2-}$

Z powstałego jonu kompleksowego H$_2$S wytrąca osad siarczku cynku. Ponadto, kompleks [Zn(CN)$_4$]$^{2-}$ rozkłada się pod wpływem kwasów. Należy zauważyć, iż wytrącanie siarczku cynku w obecności jonów cyjankowych stanowi selektywną reakcję do wykrywania jonów Zn$^{2+}$. Jednakże, w tym przypadku przeszkadzać mogą jony Cd$^{2+}$, które można usunąć w postaci nierozpuszczalnego wodorotlenku kadmu - Cd(OH)$_2$, a w tak uzyskanym roztworze cynkanów można wykryć jony Zn$^{2+}$.

3.8. Heksacyjanożelazian(II) potasu K$_4$[Fe(CN)$_6$]

Jony [Fe(CN)$_6$]$^{4-}$ w środowisku kwasu octowego wytrącają z roztworów zawierających jony Zn$^{2+}$ biały osad heksacyjnożelazianu(II) cynku, w myśl reakcji:

\[2 \text{Zn}^{2+} + [\text{Fe(CN)}_6]^{4-} \rightarrow \text{Zn}_2[\text{Fe(CN)}_6] (\downarrow) \]

Osad ten nie roztwarza się w rozcieńczonych mocnych kwasach nieorganicznych, jednakże roztwarza się w zasadach.
3.9. Tetratiocyjananortęcian(II) amonu
\((\text{NH}_4)_2[\text{Hg(SCN)}_4]\)

Jony tetratiocyjananortęcianowe(II) - \([\text{Hg(SCN)}_4]^{2-}\) wytrącają z roztworów zawierających jony \(\text{Zn}^{2+}\) biały krystaliczny osad tetratiocyjananortęcianu(II) cynku - \(\text{Zn}[\text{Hg(SCN)}_4]\), w myśl reakcji:

\[
\text{Zn}^{2+} + [\text{Hg(SCN)}_4]^{2-} \rightarrow \text{Zn}[\text{Hg(SCN)}_4] (\downarrow)
\]

Należy nadmienić, iż jony takie jak: \(\text{Al}^{3+}\) i \(\text{Cr}^{3+}\) nie przeszkadzają w tej reakcji. Ponadto, jon \(\text{Fe}^{3+}\) bezpośrednio nie wytrąca osadu, jednakże wobec soli \(\text{Zn(II)}\) następuje współwytrącanie i tworzą się kryształy mieszane o zabarwieniuioletowym. Co więcej, małe ilości soli kobaltu(II) lub miedzi(II) powodują współwytrącanie, zabarwiając osad na niebiesko lub fioletowo. Stąd, podczas wykonywania tej reakcji dodaje się 1-2 kropli roztworu \(\text{CoCl}_2\) o stężeniu 0,02%, a następnie 0,5 mL roztworu tetratiocyjananortęcianu(II) amonu. Po sprawdzeniu, że osad się nie wytrąca - pocierając przez 0,5 minuty bagietką o ścianki probówki, dodaje się 1-2 krople badanego roztworu. Efektem opisanej operacji jest wytrącanie się niebieskawego osadu kryształów mieszanych \(\text{Co}[\text{Hg(SCN)}_4]\) i \(\text{Zn}[\text{Hg(SCN)}_4]\). Należy nadmienić, iż jon \(\text{Co}^{2+}\) przyspiesza wytrącanie osadu.
3.10. Azotan(V) kobaltu(II) Co(NO₃)₂ – zieleń Rinmanna

Sole cynku zwilżone rozcieńczonym roztworem Co(NO₃)₂, a następnie prażone z sodą na węglu dają stop o zabarwieniu zielonkawym - tzw. zieleń Rinmanna (CoZnO₂). Reakcję można przeprowadzić również na bibule.

3.11. Ditizon – difenylotiokarbazon

\[C_6H_5(NH_2)CS \cdot N:N \cdot C_6H_5 \]

Difenylotiokarbazon (0,0222 %) w roztworze tetrachlorku węgla dodany i wytrząsany z obojętnym roztworem, zawierającym jony Zn²⁺ (< 0,05 mg) w buforze octanowym (pH ~ 5,0), zmienia zabarwienie z zielonego na purpurowo-czerwone, na skutek tworzenia się związku wewnętrzno-kompleksowego z cynkiem – ditizonian cynku:

![Difenylotiokarbazon](image-url)
Z uwagi na dużą czułość reakcji i możliwość obecności śladów cynku w stosowanych odczynnikach i w wodzie konieczne jest równoległe wykonywanie ślepej próby.

3.12. Kwas antranilowy

2-procentowy roztwór tworzy z jonami Zn\(^{2+}\) w środowisku o pH: 3,0 – 5,0, biały, jedwabisty osad kompleksu wewnętrznego. Inne kationy, poza litowcami i berylowcami, przeszkadzają w tej reakcji. Należy nadmienić, iż przed wykonaniem próby, należy cynk oddzielić.

3.13. Pytania kontrolne

1. Podaj skład chemiczny cynku, który przechowywany jest dłuższy czas w wilgotnym powietrzu.

2. Zapisz równanie reakcji zachodzącej podczas prażenia metalicznego cynku.

3. Zapisz równanie reakcji cynku ze stężonym kwasem chlorowodorowym.

4. Podaj reguły związane z przewidywaniem produktów reakcji metali z kwasem azotowym(V) w zależności od stężenia kwasu oraz temperatury.

5. Zapisz równanie reakcji cynku ze stężonym kwasem azotowym(V) na zimno.
6. Zapisz równanie reakcji cynku z rozcieńczonym kwasem azotowym(V) na zimno.

7. Zapisz równanie reakcji cynku z bardzo rozcieńczonym kwasem azotowym(V) na zimno.

8. Zapisz równanie reakcji cynku ze stężonym kwasem azotowym(V) na ciepło.

9. Zapisz równanie reakcji cynku z rozcieńczonym kwasem azotowym(V) na ciepło.

10. Do którego pierwiastka jest bardzo podobny cynk pod względem reakcji z kwasem azotowym(V)? Odpowiedź uzasadnij położeniem tego metalu w układzie okresowym.

11. Zapisz równanie reakcji cynku ze stężonym kwasem siarkowym(VI).

12. Zapisz równanie reakcji cynku ze stężonymi roztworami zasad w formie jonowej skróconej.

13. Zapisz wzory trudno rozpuszczalnych w wodzie związków cynku mających znaczenie analityczne.

14. W jakim zakresie pH będzie trudno rozpuszczać się w wodzie fosforan(V) cynku i amonu, ZnNH₄PO₄ · 6 H₂O?

15. Przedstaw charakterystykę analityczną reakcji jonów Zn²⁺ z wodą siarkowodorową.

17. Przedstaw charakterystykę analityczną reakcji jonów Zn\(^{2+}\) z siarczkiem sodu.

18. W jaki sposób należy prowadzić strącanie siarczku cynku, aby uzyskać żel?

19. Przedstaw charakterystykę analityczną reakcji jonów Zn\(^{2+}\) z wodorotlenkiem sodu/potasu.

20. Przedstaw charakterystykę analityczną reakcji jonów Zn\(^{2+}\) z wodą amoniakalną.

21. Przedstaw charakterystykę analityczną reakcji jonów Zn\(^{2+}\) z wodorofosforanem(V) sodu.

22. Przedstaw charakterystykę analityczną reakcji jonów Zn\(^{2+}\) z cyjankiem potasu.

23. Wytrącanie siarczku cynku w obecności jonów cyjankowych stanowi selektywną reakcję do wykrywania jonów Zn\(^{2+}\), jakie ograniczenia posiada ta metoda?

24. Przedstaw charakterystykę analityczną reakcji jonów Zn\(^{2+}\) z heksacyjanożelazianem(II) potasu.

25. Przedstaw charakterystykę analityczną reakcji jonów Zn\(^{2+}\) z tetratiocyjanianortęcianem(II) amonu.

26. Przedstaw charakterystykę analityczną reakcji jonów Zn\(^{2+}\) z azotanem(V) kobaltu.

27. Czym jest tzw. zieleń Rinmanna?

28. Przedstaw charakterystykę analityczną reakcji jonów Zn\(^{2+}\) z ditizonem.

29. Narysuj wzór kompleksu Zn\(^{2+}\) z ditizonem.
30. Przedstaw charakterystykę analityczną reakcji jonów Zn$^{2+}$ z kwasem antranilowym.

3.14. Bibliografia i literatura uzupełniająca

2002.

Analiza ilościowa cynku

4.1. Klasyczne metody chemii analitycznej

Tradycyjnie analizę chemiczną dzieli się na dwa zasadnicze działy – metody klasyczne i instrumentalne. Do klasycznych metod zalicza się metody, które nie wymagają żadnej aparatury pomiarowej (poza wagą analityczną). Drugą grupę metod stanowią wszystkie pozostałe metody, w których stosuje się instrumenty analityczne.

4.1.1. Oddzielanie cynku od niklu za pomocą jonitu

Cynk tworzy trwały anionowy kompleks chlorkowy już w dość rozcieńczonym kwasie chlorowodorowym (1-4 mol·L⁻¹), z kolei jony niklu nie są kompleksowane przez jony chlorkowe. Ilościowe rozdzielenie Zn²⁺ i Ni²⁺ można
uzyskać przez przepuszczenie roztworu zawierającego jony cynku i niklu w 3 mol·L⁻¹ kwasie chlorowodorowym przez silnie zasadowy anionit. W takim przypadku cynk zostaje zatrzymany na anionicie, a nikiel przechodzi do eluatu. Z kolei w środowisku rozcieńczonego kwasu chlorowodorowego (poniżej 0,1 mol·L⁻¹ HCl) następuje rozpad chlorkowego kompleksu cynku i dlatego przemywanie kolumny takim kwasem pozwala wymyć jony Zn²⁺ z kolumny.

W celu rozdzielenia mieszaniny, zawierającej jony Zn²⁺ i Ni²⁺, należy przygotować kolumnę z silnie zasadowym anionitem. Następnie należy przeprowadzić anionit w postać chlorkową, przepuszczając przez kolumnę 50 mL kwasu chlorowodorowego (1 + 3) (3 mol·L⁻¹ HCl). Do badanego roztworu, zawierającego Zn²⁺ i Ni²⁺, należy dodać tyle stężonego kwasu chlorowodorowego, aby stężenie HCl w otrzymanym roztworze wynosiło 3 mol·L⁻¹. Roztwór przepuszcza się następnie przez kolumnę z szybkością ok. 2 mL·min⁻¹. Później należy przemyć kolumnę 50 mL roztworu HCl o stężeniu 3 mol·L⁻¹. W łącznym eluacie znajdować się będą rozdzielone jony Zn²⁺ i Ni²⁺, które można oznaczyć wagowo w postaci dimetyloglioksymianu lub kompleksometrycznie. Cynk można eluować (wymyć) z kolumny, przepuszczając przez anionit wodę zakwaszoną 1 kroplą kwasu chlorowodorowego z szybkością ok. 2 mL·min⁻¹. Następnie cynk można oznaczyć kompleksometrycznie lub wagowo.
4.1.2. Oznaczanie cynku

Poniżej przedstawiono powszechnie stosowane i opisane w literaturze fachowej metody oznaczania cynku metodami klasycznymi.

4.1.2.1. Oznaczanie cynku jako ZnO lub ZNHN₄PO₄ w postaci siarczku - ZnS

Jony Zn²⁺ stracić można siarkowodorem z roztworu o słabo kwasowym odczynie (pH: 2,0 - 3,0) w postaci białego, bezpostaciowego osadu siarczku cynku:

\[
\text{Zn}^2+ + \text{H}_2\text{S} \rightarrow \text{ZnS (↓)} + 2 \text{ H}^+
\]

W celu dobrania optymalnego pH roztworu do strzącania siarczku cynku należy zastosować odpowiedni dodatek kwasu etanowego (octowego) lub metanowego (mrówkowego). Należy zauważyć, iż w środowisku bardziej kwasowym wytrącanie siarczku cynku nie jest całkowite, a z kolei wytrącanie ZnS z roztworu alkalicznego daje osad nieodpowiedni do sączenia. Często w celu ułatwienia filtracji, do próbki zawierającej jony Zn²⁺, przed nasycaniem siarkowodorem, dodaje się nieco chlorku rtęci(II), gdyż wydziela się w tym przypadku mieszanina siarczków - HgS i ZnS, co znacznie ułatwia sączenie i przemywanie.

Podczas prażenia uzyskanego osadu siarczku cynku następuje rozkład termiczny do tlenku cynku, a rtęć się ulatnia:
\[2 \text{ZnS} + 3 \text{O}_2 \rightarrow 2 \text{ZnO (\downarrow)} + 2 \text{SO}_2 \]

Z uwagi na trujące właściwości rtęci w postaci gazowej, spalanie i prażenie mieszaniny siarczków należy przeprowadzać pod sprawnym wyciągiem. Ponadto, podczas prażenia ZnS należy zadbać o odpowiedni dostęp powietrza. Aby nie nastąpiła redukcja i ulotnienie się metalicznego cynku, spalanie węgla z sączka powinno zachodzić w możliwie niskiej temperaturze.

Należy zauważyć, iż słabo kwasowy roztwór, z jakiego strąca się jony cynku za pomocą siarkowodoru, musi być pozbawiony jonów metali I i II grupy analitycznej, jak również jonów Co\(^{2+}\). Z kolei metale I i II grupy układu okresowego, jak również niewielkie ilości metali III grupy analitycznej (Fe, Cr, Mn, Ni, Al, U) pozostają podczas strącania ZnS w roztworze. Wydzielony siarczek cynku jest jednak zawsze w niewielkim stopniu zanieczyszczony, z uwagi na adsorpcję jonów metali obecnych w roztworze.

Strącanie cynku w postaci ZnS można zrealizować jako sposób oddzielenia Zn\(^{2+}\) od innych kationów na przykład przeprowadzając w postać fosforanu(V):

\[\text{Zn}^{2+} + \text{NH}_4^+ + \text{HPO}_4^{2-} \rightarrow \text{ZnNH}_4\text{PO}_4 (\downarrow) + \text{H}^+ \]

Należy zwrócić uwagę, iż w warunkach strącania fosforanu(V) amonu i cynku (pH: 5,0 - 7,5) mogą się również strącać fosforany(V) innych metali, stąd metodę tę stosuje się tylko wtedy, gdy jony Zn\(^{2+}\) są wcześniej oddzielone od innych metali. Strącanie fosforanu(V) amonu i cynku wymaga więc dużej uwagi ze względu na
jego łatwą rozpuszczalność, zarówno w roztworach słabo kwasowych, jak i również słabo zasadowych.

Uzyskany osad odsącza się przy użyciu tygla szklenego z dnem porowatym i suszy (lub odsącza się na sączku z bibuły), a następniepraży w temp. 900 – 1000 °C i waży w postaci pirofosforanu(V) cynku Zn$_2$P$_2$O$_7$.

4.1.2.1. Oznaczanie ZnO

Badaną próbkę (roztwór), mogącą zawierać nie więcej niż 0,25 g cynku, należy rozcieńczyć wodą w zlewce do ok. 200 mL, a następnie zobojętnić wodą amoniakalną do wystąpienia osadu wodorotlenku cynku – Zn(OH)$_2$, po czym należy dodać 30 mL stężonego kwasu octowego, 5,0 g siarczanu(VI) amonu, 0,2 g siarczanu(IV) sodu i ogrzać roztwór do temp. ok. 70 °C. Tak otrzymany roztwór należy nasycić siarkowodem z aparatu Kippa przez ok. 30 minut. Po upływie 1 godziny należy odsączyć osad na sączku z bibuły. Osad przemywa się na sączku 1 % roztworem siarczanem(VI) amonu. Następnie sączek z osadem umieszcza się w wyprażonym i zważonym tyglu porcelanowym i spala się sączek. Po wykonaniu tych operacji praży się osad przy odpowiednim dostępie powietrza w temperaturze 900 °C do stałej masy.

4.1.2.1.2. Oznaczanie ZnNH$_4$PO$_4$

Oznaczanie cynku w postaci fosforanu(V) amonu i cynku przeprowadzić można w sposób opisany poniżej. Odsączony oraz przemyty osad ZnS roztwarza się
w 25 mL kwasu chlorowodorowego (1 + 1), rozcieńcza się wodą, a następnie usuwa się siarkowodór przez ogrzewanie, a następnie oznacza się cynk w postaci ZnNH₄PO₄. W tym celu roztwór się rozcieńcza do ok. 150 mL, zobojętnia wodą amoniakalną do pH ~ 6 (np. wobec czerwieni metylowej) i ogrzewa do temperatury ok. 70 °C - mieszając oraz dodając powoli z pipety 25 mL 10 % roztworu (NH₄)₂PO₄. Ciecz z wydzielonym osadem ogrzewa się w czasie 1 godziny na łaźni wodnej, po czym odsącza się krystaliczny osad - ZnNH₄PO₄ w tyglu szklanym z dnem porowatym G4. Osad przemywa się 1 % roztworem (NH₄)₂PO₄, a następnie wodą (i ewentualnie alkoholem). Osad taki suszy się w temperaturze 110 °C do stałej masy.

4.1.2.2. Oznaczanie cynku za pomocą EDTA

Zn²⁺ można oznaczać kompleksometrycznie w roztworze zbuforowanym (pH ~ 10,0) wobec czerni eriochromowej T jako wskaźnika. Należy nadmienić, iż oznaczając cynk w roztworze, zawierającym inne metale (np. Cu, Co, Ni, Mn, Mg, Ca), należy dodać do badanej próbkii roztwór cyjanku potasu, ponieważ otrzymuje się odpowiednio kompleksy cyjankowe miedzi, kobaltu i niklu. Z kolei, obecne w roztworze jony Mg²⁺, Ca²⁺ oraz Mn²⁺, odmiareczkowuje się roztworem EDTA. Kiedy zaobserwuje się zmianę zabarwienia roztworu z fiołkowego na niebieskie, dokonuje się demaskacji cynku z kompleksu cyjankowego, dodając do roztworu metanalu (aldehydu mrówkowego). Zachodzi wówczas następująca
reakcja:

\[[\text{Zn(CN)}_4]^{2-} + 4 \text{H}_2\text{C}=\text{O} + 4 \text{H}^+ \rightarrow \text{Zn}^{2+} + 4 \text{HO-CH}_2\text{-CN} \]

Tak uwolnione jony \(\text{Zn}^{2+}\) wiążą się z czernią eriochromową \(T\), dając fiołkowe zabarwienie roztworu. Następnie cynk oznacza się przez miareczkowanie roztworem EDTA do uzyskania niebieskiego zabarwienia. Należy nadmienić, iż metanal (aldehyd mrówkowy) demaskuje również \(\text{Cd}^{2+}\) z kompleksu cyjanowego. Z kolei cyjanowe kompleksy \(\text{Cu(II)}, \text{niklu(II)}\) i \(\text{kobaltu(II)}\) są trwał-sze i nie reagują z metanalem. Ponadto jony takie jak: \(\text{Al}^{3+}, \text{Ti}^{4+}, \text{Fe}^{3+}, \text{Bi}^{3+}\) i \(\text{Pb}^{2+}\) rozdzielają się przed oznaczaniem cynku, np. poprzez dwukrotne stracanie wodorotlenków za pomocą wody amoniakalnej.

Cynk można również oznaczać na drodze miareczkowania roztworem EDTA wobec wskaźnika redoks - 3,3'-dimetylnonaftydyny, wykorzystując utleniający potencjał pomocniczego układu \([\text{Fe(CN)}_6]^{3-}/[\text{Fe(CN)}_6]^{4-}\). Gdy w roztworze znajdują się jony \(\text{Zn}^{2+}\) niezwiązane z EDTA, stracają one jony żelazocyjanowe, ponieważ potencjał utleniający układu jest wtedy dostatecznie duży i 3,3'-dimetylnonaftydyna występuje w barwnej postaci (forma utleniona). W końcowym etapie miareczkowania układ odbarwia się na skutek zredukowania 3,3'-dimetylnonaftydyny, uwalniają się jony żelazocyjanowe, a potencjał układu ulega obniżeniu.
4.1.2.3. Oznaczanie cynku za pomocą mianowanego roztworu heksacyanożelazianu(II) potasu

Idea miareczkowania polega na reakcji jonów Zn\(^{2+}\) z K\(_4[\text{Fe(CN)}_6]\) w obojętnych lub kwasowych roztworach, co daje osad K\(_2\text{Zn}_3[\text{Fe(CN)}_6]\) zgodnie z reakcją:

\[
3 \text{Zn}^{2+} + 2 \text{K}_4[\text{Fe(CN)}_6] \rightarrow \text{K}_2\text{Zn}_3[\text{Fe(CN)}_6]_2(↓) + 6 \text{K}^+
\]

Koniec reakcji obserwuje się za pomocą odpowiedniego wskaźnika redoks - najczęściej difenyloaminy lub difenylo-benzydyny, przy czym roztwór musi zawierać niewielką ilość cyjanożelazianu(III). Dopóki w analizowanym roztworze znajdują się jony Zn\(^{2+}\), wiążą one wprowadzany cyjanożelazian(II), dzięki czemu potencjał utleniający układu [Fe(CN)\(_6\)]\(^{3-}\)/[Fe(CN)\(_6\)]\(^{4-}\) jest wysoki i wskaźnik zabarwia roztwór na kolor fioletowo-niebieski. Należy zauważyć, iż wraz z chwilą pojawienia się w roztworze nawet bardzo niewielkiego nadmiaru cyjanożelazianu(II), potencjał utleniający wymienionego układu gwałtownie spada i barwa wskaźnika znika.

W celu uzyskania wyraźnej zmiany barwy konieczna jest niewielka obecność w roztworze jonów NH\(_4^+\) o SO\(_4^{2-}\). Ponadto, należy zwrócić uwagę na fakt, iż w oznaczaniu cynku przeszkadzają metale tworzące z cyjanożelazianem(II) nierozpuszczalne osady, np. Cu\(^{2+}\), Co\(^{2+}\), Ni\(^{2+}\), Mn\(^{2+}\), które trzeba usunąć z roztworu przed miareczkowaniem. Również większe ilości jonów Fe\(^{2+}\) lub Fe\(^{3+}\) przeszkadzają, ale ich wpływ można zmniejszyć do minimum, wiąząc jony Fe w kompleks, np. z nadmiarem.
fluorku potasu lub pirofosforanu(V) sodu.

Skład wytrąconego osadu, jak również ilość zużytego roztworu mianowanego, zależą od szybkości miareczkowania, stąd nastawianie miana roztworu cyjanożelazianu(II) musi się odbywać możliwie w takich samych warunkach, w jakich później będą przeprowadzane oznaczenia. Warto zwrócić uwagę, iż najdokładniejsze wyniki oznaczania Zn$^{2+}$ uzyskuje się nie w miareczkowaniu bezpośrednim, ale przez ostrożne wprowadzenie do analizowanego roztworu nadmiar roztworu cyjanożelazianu(II) i następnie odmiareczkowanie niezwiązanego odczynnika mianowanym roztworem siarczanu(VI) cynku ZnSO$_4$.

Miareczkowanie Zn prowadzi się tzw. metodą Kolthoffa, która polega na tym, że do roztworu próbki, zawierającej jony Zn$^{2+}$ dodaje się tyle kwasu siarkowego(VI), aby jego stężenie wynosiło 0,25 - 0,75 mol·L$^{-1}$ i tyle siarczanu(VI) amonu, aby jego zawartość wynosiła 0,5 - 1,0 g na 50 mL. W następnej kolejności dodaje się 3 - 4 krople 1% roztworu cyjanożelazianu(II) potasu i 2 - 3 krople roztworu wskaźnika (1 g difenyloaminy w 100 mL stęż. H$_2$SO$_4$), a następnie z umiarkowaną szybkością wlewa się, energicznie mieszając, mianowany roztwór cyjanożelazianu(II) potasu (ok. 0,025 mol·L$^{-1}$) w ilości odpowiadającej ok. 10 - 20 % nadmiaru. Po 2 minutach nadmiar ten można odmiareczkować mianowanym roztworem siarczanu(VI) cynku – ZnSO$_4$ (ok. 0,05 mol·L$^{-1}$) do zmiany barwy z żółtozielonej na niebieskofioletową. Do objętości zużytego roztworu cyjanożelazianu(II) potasu należy dodać poprawkę: 0,035 mL na każdą kroplę

wprowadzonego do roztworu wskaźnika.
Jeżeli zawartość cynku wynosi ponad 25 mg / 50 mL próbki, to lepsze wyniki (ale niższe o 0,5 – 1,0%) uzyskuje się podwyższając temperaturę próbki miareczkowanej do około 60°C.

4.1.2.4. Oznaczanie cynku za pomocą mianowanego roztworu siarczku sodu

4.2. Metody instrumentalne

4.2.1. Polarograficzne oznaczanie Zn²⁺ metodą dodatku wzorca

Poniżej przedstawiono opis polarograficznego oznaczania jonów Zn²⁺ metodą dodatku wzorca. Do wykonania oznaczenia niezbędne są: polarograf, rtęciowa elektroda kroplowa, nacyńko polarograficzne z rtęcią połączone przez mostek elektrolityczny z zewnętrzną
elektrodą kalomelową, zbiornik azotu (lub innego gazu obojętnego) wolnego od tlenu. Jeśli chodzi o odczynniki, to wymagane są 0,1 mol·L⁻¹ roztwór ZnCl₂, 2 mol·L⁻¹ roztwór KCl oraz 0,1% roztwór żelatyny. W celu dokonania pomiaru należy do czystego i suchego naczyńka polarograficznego odmierzyć dokładnie za pomocą pipety 10 mL badanej próbki, która powinna zawierać chlorek potasu ([KCl] = 0,2 mol·L⁻¹), a następnie dodaje się 2 krople 0,1% roztworu żelatyny. Zbiornik z rtęciową elektrodą kroplową podnosi się na góry poziom i w takim położeniu stosowany jest do pomiarów. Przed przystąpieniem do analizy należy sprawdzić, czy krople rtęci wypływają z kapilary o średnicy 0,03 mm kroplami o średnicy ok. 0,5 mm w odstępach czasu co 3-5 s.

Koniec kapilary należy obmywać wodą z tryskawki i osuszyć bibułą. Następnie podstawia się naczyńko polarograficzne z badanym roztworem. Na jednym ramieniu naczyńka (dłuższym) umieszcza się wężyk doprowadzający azot, na drugim (krótszym) wężyk gumowy, który zanurza się w naczyniu z wodą. Z kolei naczyńko łączy się mostkiem elektrolitycznym z zewnętrzną elektrodą kalomelową. Najpierw przez badaną próbkę w ciągu 15 minut przepuszcza się azot (lub inny obojętny gaz) z natężeniem kilku pęcherzyków na sekundę, następnie zamyka się dopływ gazu i dobiera odpowiednią czułość galwanometru. Krzywą rejestruje się w zakresie potencjału: 0,6 - 1,6 V. Następnie, do naczyńka polarograficznego, dodaje się 1 mL roztworu wzorcowego,
podstawia naczyńko pod elektrodę kroplową, otwiera dopływ azotu i przepuszcza ten gaz przez roztwór w ciągu 10 minut. Po zamknięciu dopływu gazu rejestruje się drugą krzywą przy tej samej czułości galwanometru, co poprzednio.

Po zakończeniu analizy naczyńko spod kapilary usuwa się, a koniec kapilary i mostka obmywa się wodą destylowaną i osusza bibułą. Po wyjęciu polarogramu z aparatu mierzy się wysokość obu fal i oblicza stężenie Zn\(^{2+}\) stosując następujący wzór:

\[
[Zn^{2+}] = \frac{h \cdot C}{h_1 + (h_1 - h) \frac{V}{a}}
\]

gdzie:
C – stężenie próbki wzorcowej
h – wysokość fali otrzymanej bez dodawania próbki wzorcowej
h\(_1\) – wysokość fali otrzymanej po dodaniu próbki wzorcowej
V – objętość badanego roztworu
a – objętość dodanej próbki wzorcowej

4.2.2. Polarograficzne oznaczanie Zn\(^{2+}\) metodą krzywej wzorcowej

Do wykonania oznaczenia niezbędne są: rtęciowa elektroda kroplowa, naczyńko polarograficzne, mostek elektrolityczny z elektrodą kalomelową, zbiornik z azotem (lub innym obojętnym gazem). Wymagane odczynniki to
ZnCl₂, 2 mol·L⁻¹ roztwór KCl, 0,1% roztwór żelatyny.

Przed przystąpieniem do oznaczenia należy przygotować próbki roztworów wzorcowych. W tym celu, w kolbach miarowych o pojemności 100 mL, przygotowuje się serię roztworów wzorcowych, zawierających 10 mL mol·L⁻¹ KCl, 2,5 mL 0,1% roztworu żelatyny oraz kolejno: 2, 5, 10, 15, 20 oraz 25 mL 0,1 mol·L⁻¹ roztworu ZnCl₂.

Polarograf przygotowuje się w ten sposób, że podnosi się zbiornik z rtęciową elektrodą kroplową na górny poziom, a koniec kapilary opłukuje się wodą destylowaną, po sprawdzeniu szczelności aparatu. Naczyńko polarograficzne z analizowanym roztworem podstawia pod kapilare. Po 15 minutach przepuszczania azotu przez roztwór przystępuje się do analizy.

Należy zauważyć, iż najpierw wlewa się najbardziej stężony roztwór do suchego naczyńka polarograficznego, zanurza kapilare elektrody destylowanej, po czym rejestruje krzywą polarograficzną w odpowiednim zakresie napięcia, dobierając odpowiednią czułość galwanometru.

Zapis fali powtarza się dla każdego roztworu serii wzorcowej 3-krotnie przy tej samej czułości galwanometru. Wysokość fali mierzy się stosując metodą graficzną. Średnie z poszczególnych trzech pomiarów nanosi się na wykres, odkładając na osi rzędnych wysokość fali (mm), a na osi odciętych stężenie (mg·mL⁻¹) Zn²⁺ w odpowiednich roztworach.

W celu wykonania pomiaru, 25 mL badanego roztworu przenosi się pipetą do 100 mL kolby miarowej, dodaje się 10 mL roztworu chlorku potasu i 2,5 mL roztworu żelatyny, dopełnia wodą do kreski i miesza. Tak przygotowanym
roztworem napełnia się naczyńko polarograficzne, zanurza kapilarę elektrody kroplowej i mostek elektrolityczny połączony z elektrodą kalomelową. W takich samych warunkach, co przy przygotowaniu krzywej wzorcowej, rejestruje się 3-krotnie odpowiednio fale, mierzy ich wysokość i oblicza średnią. Z przygotowanego wykresu odczytuje się stężenie jonów Zn\(^{2+}\) w badanym roztworze, a następnie oblicza stężenie tych jonów w roztworze otrzymanym do analizy.

4.3. Pytania kontrolne

1. Czym charakteryzują się klasyczne metody analityczne?

2. Czym charakteryzują się instrumentalne metody analityczne?

3. Scharakteryzuj krótko oddzielanie cynku od niklu za pomocą jonitu.

4. Czym są jonity?

5. Co zapewnia możliwość rozdzielania niklu od cynku za pomocą kwasu chlorowodorowego?

6. Kwasu o jakim stężeniu stosuje się do rozdzielania jonów Ni\(^{2+}\) od Zn\(^{2+}\)?

7. W jaki sposób po rozdzielieniu cynku od niklu na kolumnie jonitowej można eluować (wymyć) pozostałe jony Zn\(^{2+}\) z kolumny?
8. Opisz oznaczanie cynku jako ZnO w postaci siarczku.

9. Jakim pH musi charakteryzować się roztwór siarkowodoru stosowany do oznaczania cynku w postaci siarczku?

10. W jaki sposób należy „dopasować” pH roztworu siarkowodoru do oznaczania cynku w postaci siarczku?

11. Wiadomo, że w środowisku bardziej kwasowym wytrącanie siarczku cynku nie jest całkowite, a z kolei wytrącanie ZnS z roztworu alkalicznego daje osad nieodpowiedni do sączenia – co należy zrobić w celu ułatwienia filtracji osadu siarczku cynku?

13. Opisz oznaczanie cynku jako ZnNH₄PO₄ w postaci siarczku.

14. Jakie pH musi być obecne w środowisku badanej próbki, aby móc oznaczyć cynk w postaci fosforanu(V) amonu i cynku?

15. Jakie ograniczenia ma metoda oznaczania cynku jako ZnNH₄PO₄ w postaci siarczku?

16. Przed oznaczaniem ZnNH₄PO₄ należy roztwór zobojętnić za pomocą wody amoniakalnej do pH ~ 6. Jakiego wskaźnika można użyć w tym celu?
17. W jakim zakresie temperatur należy prażyć osad ZnNH₄PO₄?

18. Opisz oznaczanie cynku za pomocą EDTA.

19. Jaki wskaźnik stosuje się podczas oznaczania cynku za pomocą EDTA?

20. W jakim celu czasami do oznaczanego roztworu cynku za pomocą EDTA dodaje się roztwór cyjanku potasu?

21. Kiedy i w jaki sposób dokonuje się demaskacji jonów Zn²⁺ podczas oznaczania EDTA?

22. Zapisz równanie reakcji kompleksu cynku z metanalem.

23. Jakie inne jony może demaskować metanal podczas oznaczania cynku za pomocą EDTA?

24. Jaki układ pomocniczy redoks można wykorzystać podczas oznaczania cynku na drodze miareczkowania roztworem EDTA wobec wskaźnika 3,3'-dimetylnaftydyny?

25. Opisz oznaczanie cynku za pomocą mianowanego roztworu heksacyjanożelazianu(II) potasu.

26. Zapisz równanie reakcji jonów Zn²⁺ z K₄[Fe(CN)₆].

27. Jaki wskaźnik stosuje się podczas oznaczania cynku za pomocą mianowanego roztworu heksacyjanożelazianu(II) potasu?

28. Jakie jony metali przeszkadzają podczas oznaczania cynku za pomocą mianowanego...
roztworu heksacyjanożelazianu(II) potasu?

29. Dlaczego nastawianie miana roztworu cyjanożelazianu(II) musi się odbywać możliwie w takich samych warunkach, w jakich później będą przeprowadzone oznaczenia cynku za pomocą mianowanego roztworu heksacyjanożelazianu(II) potasu?

30. Na czym polega miareczkowanie metodą Kolthoffa?

32. Jakie ograniczenia posiada oznaczanie cynku za pomocą mianowanego roztworu siarczku sodu?

33. Na czym polega miareczkowanie metodą Jellinka i Krebsa?

34. Opisz polarograficzne oznaczanie Zn$^{2+}$ metodą dodatku wzorca.

35. Wymień i opisz aparatrę niezbędną do przeprowadzenia polarograficznego oznaczania Zn$^{2+}$.

36. Jaka jest idea metody dodatku wzorca podczas polarograficznego oznaczania Zn$^{2+}$?

37. Jaki gaz obojętny można stosować podczas polarograficznego oznaczania Zn$^{2+}$?

38. W jakim zakresie potencjału rejestruje się krzywą?

39. Opisz polarograficzne oznaczanie Zn$^{2+}$ metodą
krzywej wzorcowej.

40. Jaka jest idea metody krzywej wzorcowej podczas polarograficznego oznaczania Zn$^{2+}$?

4.4. Bibliografia i literatura uzupełniająca

Funkcja fizjologiczna cynku

5.1. Rola fizjologiczna cynku

Cynk jest wszechobecnym, niezbędnym do życia pierwiastkiem śladowym, gdyż pełni wiele istotnych ról. Jest zaraz po żelazie, najobficiej występującym w organizmie metalem przejściowym. W organizmach wielokomórkowych metal ten prawie w całości znajduje się wewnątrz komórek – 40% w jądrze, natomiast ok. 50% w cytoplazmie, organellach i wyspecjalizowanych pęcherzykach, a reszta w błonach komórkowych. W organizmie ludzkim znajduje się około 2 g cynku (1,4 – 2,4 g), z czego 60% w mięśniach, około 20% w kościach, natomiast w skórze: 10 – 15%. Największe ilości tego pierwiastka znajdują się w gruczole krokowym mężczyzn, prawdopodobnie związane jest to z wysoką zawartością cynku w kwaśnej fosfatazie (ACP, EC 3.1.3.2
enzym z klasy hydroliz). Z kolei normalne (fizjologiczne) stężenie cynku we krwi wynosi: 5,00 - 7,50 μg∙mL⁻¹, a w surowicy: 0,8 - 1,2 μg∙mL⁻¹.

Przyswajanie cynku przez organizmy zwierzęce jest regulowane hormonialnie oraz na ogół zwiększa się proporcjonalnie do jego stężenia w pożywieniu. Wchłanianie tego metalu wspomaga obecność witamin A i E.

W przeciwieństwie do żelaza i miedzi, cynk w układach biologicznych nie ulega procesom utleniania-redukcji. W organizmie rzadko występuje w postaci niezwiązanych kationów (Zn²⁺), w większości wchodzi w skład związków koordynacyjnych, odgrywając rolę katalityczną w wielu enzymach.

Dawnej uważano, iż rola tego pierwiastka sprowadza się tylko do trzech funkcji: katalitycznej, strukturalnej i regulacyjnej. Najnowsze badania donoszą, iż pierwiastek ten bierze udział w:

- procesie ekspresji genów – wiele czynników transkrypcyjnych zawiera tzw. „motyw palca cynkowego”, w którym cynk wpływa na stabilność utworzonego związku koordynacyjnego;
- procesie proliferacji, gdyż jest niezbędny do działania enzymów uczestniczących w syntezie DNA;
- w procesie odpowiedzi immunologicznej, przede wszystkim dlatego, że niedobór cynku zmniejsza zdolność niszczenia komórek NK (ang. Natural Killer cells);
• kontroli stresu oksydacyjnego, ponieważ wysoki poziom reaktywnej formy tlenu - ROS (ang. Reactive Oxygen Species) powoduje uwalnianie cynku z metalotioneiny;

• kontroli apoptozy, gdyż jednym z mechanizmów, w którym cynk wpływa na ten proces jest modulacja p53 do wiązania z DNA;

• patogenezie wielu chorób, w tym: układu krążenia, Alzheimera, Wilsona, nowotworach, oraz depresji.

Jak już wspomniano wcześniej, obecność jonów cynku (Zn\(^{2+}\)) ma ogromne znaczenie w tzw. „motywie palca cynkowego” (ang. zinc finger domain), występującym w strukturze receptorów steroidowych, które odgrywają rolę w regulowaniu transkrypcji genu. Aby przekaźniki chemiczne receptorów steroidowych (receptory wewnątrzkomórkowe) dotarły do nich, muszą przejść przez błonę komórkową. Receptor taki jest pojedynczym białkiem, mającym miejsce wiążące steroid na C-końcowym łańcuchu białka, natomiast rejon wiążący DNA blisko centrum łańcucha. Rejon wiążący DNA zawiera dwie pętle, z których każda ma około piętnastu reszt zwanych „palcami cynkowymi”, związanych ściśle z czterema resztami cysteiny, otaczającymi jon cynku. Powstała struktura „palca cynkowego” jest odpowiedzialna za wiązanie się do specyficznej sekwencji DNA, (tzw. element rozpoznawczy HRE - ang. Hormon Responsive Element) i w konsekwencji za aktywację określonych genów.
Cynk odgrywa zasadniczą rolę w procesie proliferacji komórek w różnych tkankach i wielu rodzajach komórek. Regulacja proliferacji komórek przez ten metal może wystąpić na różnych poziomach, wymagających obecności tego pierwiastka do wywołania aktywności enzymów biorących udział w syntezie DNA (deoksytymidyna kinazy), oraz w modulacji sygnałów regulujących bezpośrednio, jak i pośrednio, poprzez jego wpływ na hormonalną regulację podziału komórek. Przykładem tego może być hormon wzrostu przysadki mózgowej – insulinopodobny czynnik wzrostu 1 (ang. insulin-like growth factor-1), który reaguje na zmiany poziomu cynku (chociaż wpływ niedoboru cynku na spadek procesu proliferacji komórek jest sprawą dyskusyjną). Przyjmuje się, iż cynk pełni istotną rolę w procesie odpowiedzi immunologicznej.

Cynk jest niezbędny dla prawidłowego rozwoju i funkcjonowania: komórek odpornościowych (odporność wrodzona), neutrofili, komórek NK (ang. Natural Killer), oraz makrofagów. Niedobór tego metalu powiązany jest z przebiegiem fagocytozy, wewnątrzkomórkowym zabijaniem (ang. intercellular killing), produkcją cytokin (białkowe mediatory międzykomórkowe – „posłaniec układu odpornościowego”) oraz poprawnym wzrostem i działaniem limfocytów T i B.

Badania przeprowadzone z udziałem ludzi, polegające na wywołaniu łagodnego niedoboru tego pierwiastka poprzez ograniczenie ilości cynku w spożywanym posiłku do 3 – 5 mg/dobę, umożliwiły zaobserwowanie kilku objawów. Pierwszym z nich było zmniejszenie aktywności
działania grasicy (cynk wpływa na hormony grasicy – tymuliny) po dwunastu dniach od stosowania diety. W łagodnych stanach niedoboru cynku zaobserwowano zmniejszenie aktywności IL-2 oraz komórek NK w stosunku do T4+ i T8+. Wszystkie te zmiany zostały skorygowane przy stosowaniu diety bogatej w cynk. Badania te wykazały również, iż generacja INF-γ uległa obniżeniu, natomiast nie zaobserwowano spadku stężenia produkcji cytokin: IL-4, IL-6 i IL-10. Powyższe fakty, potwierdzają znaczenie cynku, jeśli chodzi o wpływ na funkcjonowanie systemu odpornościowego.

Cynk jest niezbędnym składnikiem tymuliny (ang. thymulin), hormonu grasicy, zaangażowanego w dojrzewanie i różnicowanie komórek typu T. Ekspresje genu IL-2 i IFN-γ (Th1 cytokiny) są uzależnione od cynku. IL-2 bierze udział w aktywacji komórek NK, cytolitycznych komórek T i jest generowany przez pobudzone makrofagi – monocyty, co z kolei jest uzależnione od stężeń tego pierwiastka. IFN-γ i IL-12 wspólnie odgrywają istotną rolę w eliminacji: pasożytów, wirusów i bakterii przez makrofagi i monocyty. Linie ciągłe wskazują ścieżki prowadzące do generacji wybranych cytokin, z kolei linie przerywane reprezentują szlaki, które prowadzą do zahamowania wytwarzania cytokin.

We wszystkich systemach życiowych, komórki wymagają odpowiedniego poziomu obrony antyutleniaczy (antyoksydantów) w celu uniknięcia szkodliwego wpływu nadmiernie wytwarzanych reaktywnych form tlenu – ROS (ang. Reactive Oxygen Species).
W stanie zapalnym, aktywacja fagocytów i/lub oddziaływanie produktów bakteryjnych ze specyficznymi receptorami, daje możliwość promowania działania oksydaży NADPH, która katalizuje produkcję dużych ilości wolnych rodników ponadtlenkowych \((O_2^-)\). Cynk chroni komórki przed uszkodzeniem, związanym z wpływem wolnych rodników. Może to być związane ze stabilizacją struktury błony komórkowej, która związana jest z utrzymaniem odpowiedniego stężenia metalotioneiny (związanej z cynkiem) oraz inhibicją oksydaży NADPH.

Warto zauważyć, iż odnotowano przypadki zarówno u ludzi, jak i u zwierząt związane ze wzrostem stresu oksydacyjnego w przypadku niedoboru cynku, co skutkowało zwiększeniem utleniania lipidów, białek i DNA. Długotrwały niedobór tego pierwiastka powoduje zwiększenie podatności na uszkodzenia wywołane przez stres oksydacyjny – wraz ze spadkiem poziomu cynku wzrasta poziom peroksydacji lipidów błon mitochondrialnych i mikrosomalnych oraz łamliwość błon erytrocytów, podczas gdy obecność tego metalu zapobiega peroksydacji lipidów. ROS odpowiedzialne są za aktywację NF-κB. Cynk zmniejsza generację ROS, hamuje oksydację. SOD jest enzymem zawierającym zarówno cynk i miedź – obniża stres oksydacyjny. MT (ang. MethaloTioneine) – metalotioneina, zawiera związany cynk i obniża narażenie na rodniki hydroksylowe. Cynk poprzez A20 hamuje aktywację NF-κB (ang. Nuclear Factor kappa-light-chain-enhancer of activated B cells - kompleks białkowy działający jako czynnik transkrypcyjny), a to powoduje spadek...

Zwiększona apoptoza in vivo, może występować jako bezpośrednia lub pośrednia konsekwencja spadku wewnątrzkomórkowego stężenia cynku. Stąd, cynk komórkowy określany jest jako inhibitor apoptozy, a jego niedobór powoduje śmierć w wielu liniach komórkowych. Ten niedobór może powodować aktywację niektórych proteaz specyficznych dla apoptozy (kaspazy), które aktywują apoptotyczne endonukleazy, które z kolei produkują typowe fragmentacje DNA. Kaspazy takie jak
kaspaza - 3, 8 i 9 są odpowiedzialne za proteolizy kilku docelowych białek lub za czynniki transkrypcji. Kaspazy-6 są czynnikami, związanymi z apoptosisą, najbardziej zależnymi od cynku w porównaniu z innymi przedstawicielami tej grupy. Struktura ta rozszczepia i aktywuje postacie proenzymu z kaspazy-3, a także jest odpowiedzialna za rozszczepienie lamin (białka fibrylarne pełniące w jądralach komórkowych funkcje strukturalne i regulacyjne podczas mitozy) i dlatego jest bezpośrednio związana z zapadalarszaną w jądrowym rozpadzie błon. Stąd, równowaga między życiem a śmiercią komórek jest utrzymywana przez kilka kanałów cynkowych, kontrolujących wewnątrzkomórkowe przemieszczanie cynku i ilość jonów cynku niezwiązanych. Niedobór cynku może również wywoływać apoptosisę przez zakłócenie czynników wzrostu szlaku transdukcji sygnału za pośrednictwem receptorów kinaz tyrozynowych.

Starzenie się jest nieuniknionym procesem biologicznym związanym ze stopniowymi, spontanicznymi, biochemicznymi i fizjologicznymi zmianami oraz zwiększoną podatnością na choroby. Jak już wcześniej wspominano cynk może uczestniczyć w patogenezie wielu chorób między innymi: chorobie Alzheimera (AD – and. Alzheimer’s Disease), chorobie Wilsona (zwyrodnienie soczewkowo-wątrobowe) i cukrzycy. Istnieją liczne dowody, że metabolizm cynku ulega zmianom w chorobie Alzheimera i innych chorobach neurodegeneracyjnych. Dzięki badaniom histologicznym stwierdzono wewnątrzkomórkowe wiązki włókienek, które zawierają bogate w reszty fosforanowe(V) białka neurowłókienkowe
stresem oksydacyjnym jak i modulować neurotransmisję. Dowiedziono również, iż wysokie stężenie białek: ZnT1, 3-7 oraz DMT1, jest zlokalizowane w zdegenerowanych aksonach w (lub wokół) dodatnio naładowanej części blaszek Aβ (ludzki AD), oraz preseniliny 1 (PS1) (mózg myszy transgenicznych). Genetyczne zniesienie ZnT3 skutkuje eliminacją jonów cynku z pęcherzyków synaptycznych i prowadzi (w zależności od wieku), do problemów związanych z zapamiętywaniem i uczeniem się (badania na myszach ze zniesieniem genetycznym ZnT3). Co więcej, stwierdzono istotny wpływ cynku synaptycznego na generowanie i agregację płytek amyloidowych β (eksperyment zwierzęcy). Ponadto, dowiedziono, że wysoki poziom cynku w diecie może powodować zaburzenia poznawcze i zwiększać agregację Aβ. Stąd, należy stwierdzić, że dieta bogata w nadmiarowe ilości cynku może potencjalnie być czynnikiem przyczyniającym się do patofizjologii AD. O ile jednak kluczowa rola Aβ w patogenezie AD jest niezaprzeczalnie w dużej mierze oparta na badaniach genetycznych, o tyle znaczne dowody wskazują, że produkcja Aβ nie jest jedynym czynnikiem w patogenezie tej choroby. Problem ten ma zasadnicze znaczenie dla możliwości rozwoju i modyfikacji w przebiegu leczenia AD, gdyż obecnie dostępne w obrocie handlowym preparaty farmaceutyczne łagodzą objawy chorobowe, a nie działają na czynniki leżące u podstaw patofizjologii. Jednakże inne bardziej aktualne podejście do opracowywania leków dla AD zostało ukierunkowane na ograniczenie progresji choroby. Niemniej jednak, kierunek badań kładzie
największy nacisk na blokowanie akumulacji Aβ (np. w starczych płytkach mózgu, w mózgu). Badania genetyczne wyraźnie implikują zmiany w produkcji Aβ w patogenezie AD, jednakże nadal pozostaje niejasne, w jaki sposób Aβ gromadzi się w mózgu i prowadzi do zaburzeń funkcji poznawczych i demencji. Tak, więc ukierunkowanie badań na problem Aβ w leczeniu choroby Alzheimera, oraz inne czynniki wpływające na toksyczność Aβ wymagają dalszych badań do wyjaśnienia istoty zagadnienia tego mechanizmu chorobowego.

Choroba Wilsona jest uwarunkowanym genetycznie zaburzeniem metabolizmu miedzi w organizmie. Wadliwy (defektywny) gen - ATP7B, dekoduje białko wątroby odpowiedzialne za transport miedzi, które odgrywa kluczową rolę u człowieka. Wiele objawów klinicznych, związanych z akumulacją miedzi głównie w wątrobie i mózgu, obejmuje choroby wątroby - począwszy od łagodnego zapalenia wątroby do jej ostrej niewydolności lub marskości i/lub neurologiczne objawy, takie jak: dystonia, drżenie, zaburzenia mowy i zaburzenia psychiczne. Wczesne rozpoznanie za pomocą badań klinicznych, biochemicznych lub genetycznych i rozpoczęcie leczenia związkami chelatującymi jony miedzi, podawanie soli cynku (octan cynku) lub nawet przeszczep wątroby w przypadkach ostrej i przewlekłej niewydolności wątroby, są niezbędne dla korzystnego wyniku leczenia. Rola związków cynku w chorobie Wilsona jest związana z pobudzaniem syntezy metalotioneiny w jelitach i wątrobie.
W modelu choroby Wilsona, przeprowadzonym na myszach laboratoryjnych (podawanie odpowiednio wzbogaconego mleka), obserwuje się kumulację wątrobowej metalotioneiny, co wskazuje na zabezpieczenie ustroju przed nadmierną ilością miedzi. Z kolei, podawanie preparatów cynkowych nie pogarsza, a wręcz w niektórych przypadkach polepsza, obserwowane kliniczne symptomy u pacjentów. Chociaż podawanie farmaceutyków cynku wiąże się ze skutkami ubocznymi, to żadne z nich nie są poważne. Stąd, podawanie octanu cynku, jest zalecaną terapią przy długotrwałym leczeniu pacjentów z chorobą Wilsona. Od dziesięcioleci wiadomo, iż istnieją pewne aspekty fizyczne i chemiczne związane z relacją cynk-insulina. Jednakże od wielu lat nie było żadnych biochemicznych dowodów na związek pomiędzy cynkiem a insuliną w komórkach β. Wiadomym jest, że dodanie cynku do insuliny może zmienić efekt w czasie w zależności od podanej dawki insuliny. Wiązanie cynku z insuliną ma wpływ na krystalizację hormonu - dwa jony cynku leżą na środku każdej heksamerycznej jednostki insuliny, co daje możliwość przechowywania w komórkach β trzustki odpowiednich ilości insuliny, która może być uwolniona po spożytym posiłku. Założenia te potwierdził eksperyment zwierzęcy - badania na myszach transgenicznych z podaniem zmodyfikowanej insuliny (HisB10Asp), która była niezdolna do wiązania się z cynkiem, co ujawniło przypuszczone nieprawidłowości w strukturze hormonu, na podstawie pęcherzyków wydzielniczych i tworzenia krystalicznego "gęstego pnia".
Związek pomiędzy cynkiem a cukrzycą typu 1 i typu 2 wydaje się być skomplikowany. Niektóre z powikłań cukrzycy mogą być związane ze wzrostem wewnątrzkomórkowych utleniaczy i wolnych rodników, związane ze zmniejszeniem wewnątrzkomórkowego cynku oraz enzymów anty-oksydacyjnych zależnych od cynku. Badania pozwoliły na zidentyfikowanie przenośników cynku wysp trzustkowych – ZnT8, który odpowiedzialny jest za kontrolowanie wydzielania insuliny oraz rozwój cukrzycy typu 2, co spowodowało, że stał się on przedmiotem badań. Ponadto, biochemiczne i genetyczne dowody potwierdziły przypuszczenia związane z tym, że enzym obniżający poziom insuliny - IDE (ang. Insulin-Degrading Enzyme lub isulysin) bierze udział w patogenezie cukrzycy typu 2. IDE jest wysoce konserwatywną endopeptydazą, zależną od cynku, regulującą stan równowagi między insuliną obwodową a mózgowym peptydem β-amyloidowym w chorobie Alzheimera.

Oprócz wymienionych funkcji fizjologicznych, jakie pełni lub może pełnić cynk, należy również wspomnieć o jego funkcjach enzymatycznych, bowiem jest on kofaktorem ponad trzystu poznanych enzymów. Specyficzną biochemiczną rolę cynku odkryto w 1939 r., gdy stwierdzono, że jest on istotnym składnikiem anhydrazy węglanowej. Enzym ten katalizuje odwracalną reakcję powstawania jonu wodorowego HCO− z wody i tlenku węgla(IV). Centrum aktywnym anhydrazy węglanowej jest kofaktor – jon cynku (Zn2+), znajdujący się w kieszeni, utworzonej przez część białkową enzymu. Jon
cynku wiąże się koordynacyjnie przez trzy atomy azotu z pierścieni imidazolowych reszt histydynowych (His94, His96 i His119) oraz cząsteczkę wody. Prawdopodobny mechanizm katalizy polega na jonizacji wody z utworzeniem układu Zn-OH–, który nukleofilowo oddziałuje z atomem węgla z tlenku węgla(IV), tworząc jon wodorowęglanowy (HCO3–).

5.2. Pytania kontrolne

1. Określ położenie jonów cynku w organizmach wielokomórkowych.

2. Ile gramów cynku znajduje się w organizmie ludzkim?

3. Wiadomo, że największe ilości cynku znajdują się w gruczole krokowym mężczyzn – z czego to wynika?

4. Podaj normalne (fizjologiczne) stężenie cynku w krwi człowieka.

5. Podaj normalne (fizjologiczne) stężenie cynku w surowicy krwi ludzkiej.

6. W jaki sposób przyswajanie cynku przez organizmy zwierzęce jest regulowane?

7. Czy cynk ulega procesom utlenienia-redukcji w ustroju?
8. Obecność których witamin wzmaga wchłanianie cynku z pożywienia?

9. W jakiej najczęściej postaci występuje cynk w ustroju ludzkim?

10. Wymień procesy biochemiczne, w jakich uczestniczy cynk na podstawie najnowszej literatury.

11. Czym jest tzw. „motyw palca cynkowego”?

12. Za co jest odpowiedzialna struktura tzw. „motywu palca cynkowego”

13. Jaką rolę pełni cynk w tzw. „motywie palca cynkowego”?

14. Jaką rolę pełni cynk w procesie odpowiedzi immunologicznej?

15. Jaką rolę pełni cynk w układzie odpornościowym?

16. Jaką rolę pełni cynk w kontroli stresu oksydacyjnego?

17. Jaką rolę pełni cynk w kontroli apoptozy?

18. Jaką rolę pełni cynk w regulacji proliferacji komórek?

19. Na czym polegało doświadczenie związane z wywołaniem łagodnego niedoboru tego pierwiastka w organizmie ludzkim?

20. Wymień, jakie konsekwencje może wywołać łagodny niedobór cynku w organizmie ludzkim.
21. Jaką rolę pełni cynk w odniesieniu do wpływu wolnych rodników na komórki?

22. Wymień, jakie konsekwencje może wywołać wysoki niedobór cynku w organizmie ludzkim.

23. Jaką rolę pełni cynk w odniesieniu do nowotworów?

24. Wyjaśnij, dlaczego cynk określany jest jako inhibitor apoptozy?

25. Jaką rolę pełni cynk w chorobach neurodegradacyjnych (np. w AD)?

26. Jaką rolę pełni cynk w chorobie Wilsona?

27. Jaką rolę pełni cynk w cukrzycy typu 1 i 2?

28. Jaką rolę pełni cynk w kontekście enzymów?

29. Opisz budowę i zasadę działania anhydrazy węglanowej uwzględniając w niej rolę cynku.

5.3. Bibliografia i literatura uzupełniająca

COUSINS, Robert J.; MCMAHON, Robert J. Integrative aspects of zinc transporters. The Journal of nutrition, 2000, 130.5: 1384S-1387S.

HOVE, Elvehjem; ELVEHJEM, C. A.; HART, E. B. The physiology of zinc in the nutrition of the rat. American

SZEWCZYK, Bernadeta; KUBERA, Marta; NOWAK, Gabriel. The role of zinc in neurodegenerative inflammatory pathways in depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35.3: 693-701.

Losy cynku w organizmie

6.1. Wchłanianie

Zwiększone stężenie cynku u pracowników hut, narażonych na ekspozycję dymów tlenku cynku, sugeruje, że absorpcja tego związku chemicznego zachodzi również w płucach. Absorpcja cynku z przewodu pokarmowego odbywa się głównie w drugiej części dwunastnicy i jelicie czczym, a na jej ilość wpływa wiele czynników, takich jak: ilości cynku w organizmie (homeostaza), rodzaju spożywanego pokarmu i zapotrzebowanie na ten metal przez organizm. W normalnych warunkach fizjologicznych, duże ilości tego metalu wchłaniają się także w jelicie cienkim, jak się przypuszcza przez transport ułatwiony (z wykorzystaniem nośników). Dokładne mechanizmy transportu tego metalu przez ściany jelit, następnie do osocza i przenikanie do innych tkanek nie są do końca
poznane. Niemniej, istnieje kilka modeli mechanizmów tłumaczących procesy absorpcji tego pierwiastka. Jeden z takich modeli, wskazuje na kationowy przekaźnik jonów na II stopniu utlenienia sprzężony z protonem – DCT1 (ang. a proton-coupled Divalent Cation Transporter), specyficzny dla takich jonów jak: Fe\(^{2+}\), Zn\(^{2+}\), Cu\(^{2+}\), Cd\(^{2+}\), Mn\(^{2+}\), Co\(^{2+}\), Ni\(^{2+}\) i Pb\(^{2+}\), który został zidentyfikowany w błonach komórkowych rąbka szczoteczковego (ang. Brush-Border Membrane Vesicles – BBMV) enterocytów jelita cienkiego u szczurów. Cynk w komórkach nabłonkowych jelita wiąże się metalotioneiną lub z innymi wewnątrzkomórkowymi białkami – np. jelitowym białkiem bogatym w cysteinę i jest transportowany do organeli komórkowych oraz poprzez błonę podstawnoboczną (z ang. basolateral membran) do krwi. Przekaźnik cynku – ZnT1, jest wszechobecnym białkiem należący do rodziny przekaźników białkowych takich metali jak: cynk, kobalt, kadm, który chroni komórki przed toksycznością metalu, został zidentyfikowany w błonie podstawnobocznej komórek nabłonka jelit.

Na podstawie eksperymentu zwierzęcego, związanego ze zmianami stężeń cynku w diecie szczurów, zaobserwowano odpowiedź w przypadku podawania nadmiarowych ilości tego metalu w pokarmie, natomiast nie zaobserwowano reakcji analogicznej w przypadku niedoborowych ilości tego metalu w stosowanej diecie. Stąd, obecnie uznaje się, że ZnT1 funkcjonuje głównie jako eksporter cynku i przypuszcza się, że odgrywa rolę w homeostazie tego pierwiastka w przypadku nadmiarowych jego ilości w ustroju.
Inny przekaźnik cynku – ZnT2 został zidentyfikowany w wewnątrzkomórkowych pęcherzykach nerek szczurzych. ZnT2 może mieć znaczenie w transporcie cynku w pęcherzykach, a tym samym może chronić komórki przed jego cytotoksycznym działaniem. Następnie cynk jest eksportowany z błony podstawnobocznej komórek nabłonka jelit do krążenia krezkowego, gdzie wiąże się z białkami osocza, głównie albuminami. Kompleks białkowo-cynkowy, jest następnie transportowany poprzez krążenie wrotne (ang. portal circulation) do wątroby, gdzie jest pobierany i wydalany, a następnie rozdystrybuowany do innych tkanek. W surowicy krwi, cynk jest głównie związany z albuminami (ok. 85%) oraz w mniejszym stopniu z α2-makroglobuliną (ok. 16%) i aminokwasami (ok. 1 - 2%). Jak już wcześniej wspomniano, normalne (fizjologiczne) stężenie cynku we krwi wynosi: 5,00 -7,50 μg∙mL⁻¹, a w surowicy 0,8 - 1,2 μg∙mL⁻¹ (ok. 1 mg∙L⁻¹). Niemniej, stężenie cynku w osoczu nie jest czułym wskaźnikiem stanu cynku i nie odzwierciedla zależności dawka – efekt, między poziomem tego pierwiastka w organizmie a efektem w różnych miejscach docelowych. Najbardziej wiarygodnym wskaźnikiem stanu cynku jest określenie jego równowagi, stosując homeostatyczny model (U-kształtny), określający związek pomiędzy spożyciem a wydalaniem. Należy również zauważyć, iż zmiany w zawartości w krwi wymienionych białek, mogą diametralnie wpływać na ilość tego pierwiastka w osoczu krwi. Źródłem cynku w przewodzie pokarmowym jest cynk z pożywienia (około 10 mg Zn) oraz soki trawienne (ok. 3
mg Zn). Sok trzustkowy ma najwyższe stężenie cynku i może zawierać ligandy, który promują wchłanianie tego metalu przez jelita. Nieorganiczne formy cynku (wolne jony, związki koordynacyjne, sole), znajdując się w przewodzie pokarmowym, nie została zidentyfikowana.

Wykazano również, iż absorpcja cynku na drodze przewodu pokarmowego zmniejsza się wraz z wiekiem, co związane jest ze zwiększeniem stężenia tego pierwiastka w erytrocytach i wydalaniem moczu. Sugeruje to, że zmiany w metabolizmie cynku są elementem procesu starzenia się. Wydajność pomp jonowych maleje wraz z wiekiem, naruszając mechanizmy regulacyjne wewnątrz i zewnątrzkomórkowej równowagi tego pierwiastka. Skutkuje to wzrostem zawartości cynku w płacie czołowym i neurocytach hipokampa i zmniejszeniem jego ilości w limfocytach. Zmiany te wskazują na wzrastającą redystrybucję jonów cynku w organizmie, w wyniku czego następuje zmniejszenie absorpcji wraz z wiekiem. Badania oparte na izotopach, stwierdziły, że u ludzi o normalnej diecie absorpcja cynku zawartego w posiłkach wynosi w przybliżeniu około: 20 – 40%. Obecność metali śladowych takich jak: miedź, kadm, rtęć oraz jonów fosforanowych(V) obniża wchłanianie tego pierwiastka. Podobnie jak inne metale, cynk indukuje produkcję metalotioneiny. Metalotioneina wiąże się z cynkiem w komórkach błony śluzowej przewodu pokarmowego. Poprzez wydalanie kompleksu: metalotioneina-cynk na drodze stłusczania się nabłonka - metalotioneina zapobiega wchłanianiu nadmiernych ilości tego pierwiastka.
W przypadku nadmiarowych ilości cynku, zawartego w pokarmie, jego absorpcja zachodzi tak jak w normalnym stanie fizjologicznym oraz na drodze dyfuzji biernej. Ponadto, kiedy ilość przyjmowanego cynku wzrasta, wchłanianie z przewodu pokarmowego ulega zmniejszeniu, a zwiększeniu ulega wydalanie z moczem i ilość cynku pozostaje na stałym poziomie. Kiedy te podstawowe homeostatyczne mechanizmy nie są wystarczające do przyjmowania nadmiernych ilości cynku, to metal może przechodzić w większych ilościach do włosów. W przypadku bardzo niskich zawartości cynku w pożywieniu, absorpcja może wzrosnąć w zakresie 59 - 84%, a wydalanie z kałem i moczem ulega zmniejszeniu.

Dane na temat absorpcji cynku przez skórę są w literaturze znikome, stąd wchłanianie tą drogą można uznać za mało znaczące. Jedynie niewielkie ilości wchłoniętego cynku przez uszkodzoną skórę, stwierdzono u pacjentów z poparzeniami leczonymi opatrunkami z tlenku cynku.

6.2. Dystrybucja

Początkowo, wchłonięty cynk gromadzi się w wątrobie, gdzie tworzy związki koordynacyjne z białkami. W osoczu transportowany jest głównie jako kompleks: cynkowo-makroglobulinowy, glinowo-cynkowy oraz w niewielkich ilościach jako kompleks o małej masie cząsteczkowej – metalotioneina.

Cynk jest obecny we wszystkich tkankach i płynach w organizmie, jednakże nie ulega w nim cumulacji – jak
dotąd nie stwierdzono miejsca w organizmie pełniącego rolę magazynu tego pierwiastka. Mięśnie i kości zawierają odpowiednio ok. 63% i 23% w odniesieniu do całego cynku w organizmie. Największe ilości tego metalu znajdują się w gruczole krokowym mężczyzn, gdyż prawdopodobnie związane jest to z wysoką zawartością cynku w kwaśnej fosfatazie – enzym z klasy hydrolaz.
W osoczu krwi, albuminy łączą ok. 85% cynku oraz w mniejszym stopniu - około 16% α2-makroglobulin, natomiast aminokwasy wiążą około 16%.

6.3. Wydalanie

Metal ten u człowieka wydalany jest głównie z kałem (70 - 80%) – ok. 1 mg/dzień w przypadku diety ubogiej w cynk, oraz ok. 5 mg/dzień w przypadku diety bogatej w ten pierwiastek. Eliminacja z moczem oceniana jest na: 300 - 700 μg/dzień (15 - 25 %). Wydalanie z potem jest na bardzo niskim poziomie, porównywalnym do wydalania z moczem. Eliminacja tego metalu, w przypadku nadmiarowych ilości, następuje na drodze wydalania z moczem. Wydalanie z kałem zwiększa się w przypadku nadmiarowych ilości tego pierwiastka w ustroju. Wzmożone wydalanie cynku z moczem obserwuje się u ludzi z zaburzeniami funkcji nerek – wykazano, ważną rolę w utrzymaniu homeostazy cynku w organizmie.
6.4. Pytania kontrolne

1. Która grupa robocza jest narażona na tlenek cynku poprzez górne drogi oddechowe?

2. Gdzie głównie zachodzi wchłanianie w przewodzie pokarmowym?

3. Opisz transport jonów Zn$^{2+}$ biorąc pod uwagę model, wskazujący na kationowy przekaźnik jonów na II stopniu utlenienia sprzężony z protonem – DCT1 (ang. a proton-coupled Divalent Cation Transporter).

4. Opisz zasadę działania przekaźnika cynku ZnT1

5. Jaki przekaźnik cynku został zidentyfikowany w błonie podstawnobocznej komórek nabłonka jelit?

6. Opisz zasadę działania przekaźnika cynku ZnT2.

7. Podaj wartość fizjologicznego stężenia cynku w krwi ludzkiej.

8. Podaj wartość fizjologicznego stężenia cynku w osoczu krwi ludzkiej.

9. Czy poziom cynku we krwi stanowi dobry biomarker stanu cynku w organizmie? Odpowiedź uzasadnij.

10. Podaj wiarygodny biomarker stanu cynku w organizmie.

11. Podaj główne źródło cynku w przewodzie
pokarmowym.

12. Jaki wpływ na absorpcję cynku z przewodu pokarmowego ma wiek?

13. Jaki wpływ na wchłanianie cynku ma obecność metali śladowych takich jak: miedź, kadm, rtęć oraz jonów fosforanowych(V)?

14. W którym miejscu w organizmie metalotioneina wiąże się z cynkiem?

15. Co się dzieje w przypadku, gdy cynk jest eksportowany z błony podstawnobocznej komórek nabłonka jelit do krążenia krzepowego?

16. Co można powiedzieć o mechanizmach transportu cynku przez ściany jelit, następnie do osocza i przenikanie do innych tkanek?

17. W jakim materiale biologicznym cynk jest głównie związany z albuminami (ok. 85%) oraz w mniejszym stopniu z α2-makroglobuliną (ok. 16%) i aminokwasami (ok. 1 - 2%)?

18. Opisz działania organizmu w przypadku nadmiaru cynku.

19. Czy cynk wchłania się przez skórę?

20. Czy są znane przypadki zwiększonego poziomu cynku na drodze wchłaniania dermalnego?

21. Gdzie początkowo po wchłonięciu gromadzi się cynk w organizmie ludzkim?

22. W jaki sposób transportowane są jony cynku przez
osocze?
23. Podaj przybliżoną zawartość cynku w mięśniach i kościach.
24. Czy istnieje miejsce kumulacji cynku w organizmie?
25. Podaj, jaki jest główny sposób wydalania cynku z ludzkiego organizmu.
26. Podaj jak kształtuję się wydalanie cynku z moczem w przypadku diety ubogiej w cynk – wartości podaj w μg/dzień.
27. Podaj jak kształtuję się wydalanie cynku z moczem w przypadku diety bogatej w cynk – wartości podaj w μg/dzień.
28. Czy cynk wydalany jest z potem? Jeśli tak, to jak można wydalanie to odnieść do innych dróg wydalania?
29. W jakim przypadku obserwuje się wzmożone wydalanie cynku z moczem?

6.5 Bibliografia i literatura uzupełniająca

COUSINS, Robert J.; MCMAHON, Robert J. Integrative aspects of zinc transporters. The Journal of nutrition, 2000, 130.5: 1384S-1387S.

SZEWCZYK, Bernadeta; KUBERA, Marta; NOWAK, Gabriel. The role of zinc in neurodegenerative inflammatory pathways in depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35.3: 693-701.

Źródła cynku i jego niedobór

7.1. Podstawowe wiadomości

Cynk jest kluczowym pierwiastkiem wpływającym na zdrowie człowieka, stąd nawet niewielki niedobór może negatywnie wpływać na stan ustroju.

Najbogatszym źródłem cynku w diecie jest mięso, skorupiaki (zwłaszcza ostrygi) i produkty pełnoziarniste. W przypadku diety wegetariańskiej, która składa się głównie z owoców oraz warzyw, zawartość cynku jest na niskim poziomie. Z kolei dieta na bazie zbóż zawiera duże ilości tego pierwiastka w formie związków chelatowych, co obniża jego biodostępność.

Dawka dzienna cynku dla dzieci w wieku od 1 - 10 lat wynosi: 10 mg, w wieku: 11 - 18 lat i dla dorosłych: 15 mg – dla mężczyzn i 12 mg dla kobiet. Dawka terapeutyczna zawiera się w przedziale: 10 - 250 mg. Mleko matki jest
bogatym źródłem cynku, stąd niemowlęta są szczególnie narażone na niedobór cynku w czasie karmienia w momencie, gdy ilości tego metalu w spożywanych posiłkach nie są wystarczające lub w przypadku rzadkich chorób dziedzicznych, związanych z zaburzeniami wydzielania cynku w mleku matki, czy z zaburzeniami wchłaniania jelitowego cynku.

Problem niedoboru cynku może dotyczyć milionów ludzi na świecie ze względu na ograniczone spożywanie żywności bogatej w cynk, czy bogato występujące w diecie roślinnej inhibitory wchłaniania cynku, takie jak fityniany. Niestety brak jest obecnie wskaźników mówiących o poziomie tego pierwiastka w organizmie ludzkim, stąd informacja na temat jego niedoboru jest często niemożliwa do uzyskania.

Niedobór cynku jest w dużej mierze związany z niedostateczną ilością tego pierwiastka w spożywanym pokarzmie, czy jego absorpcji z pokarzu, chociaż nadmierne straty cynku podczas biegunki mogą również byćbrane pod uwagę.

Wraz z niedoborem cynku można obserwować wiele schorzeń i chorób. Do pierwszych objawów można zaliczyć: wysypkę, utratę apetytu, powonienia, smaku. Natomiast duże braki cynku mogą prowadzić do:

- atrofii gracicy i tkanek limfatycznych (eksperyment zwierzęcy);
- epilepsji;
- anoreksji;
awitaminozy A (witamina A nie jest przyswajalna przy niedoborze cynku);

podatności na infekcje (cynk działa antywirusowo);

zaburzeń rozwoju kości;

wykwitów skórnych, wypadania włosów (dermatitis enteropathica);

chorób gruczołu krokoowego (gruczolak stercza, nowotwór stercza, stwardnienie szyi pęcherza);

obniżenia intelektualnego potencjału mózgu;

zmian chorobowych skóry, słabej odporność na stres;

łysienia;

zaburzeń funkcji poznawczych;

zaburzeń funkcji seksualnych;

zespołu Brandta/Zespół Danbolta-Clossa (acrodermatitis enteropathica) – rzadko dziedziczona genetyczna choroba, występująca u niemowląt po odstawieniu od karmienia piersią, powodująca niedobór cynku ze względu na słabe wchłanianie tego metalu z jelit.

Niedobór cynku, oprócz wywoływania pewnych objawów chorobowych, może również towarzyszyć wielu chorobom takim jak: zaburzenia żołądkowo-jelitowe,
choroby nerek, anemii sierpowatej, alkoholizmowi, niektórym rodzajom nowotworów, AIDS czy starzeniu.

7.2. **Pytania kontrolne**

1. Wymień produkty żywnościowe, będące głównym źródłem cynku w pokarmie człowieka.

2. W jaki sposób wpływa dieta wegetariańska na poziom cynku w organizmie?

3. Czy dieta na bazie zbóż wpływa pozytywnie, czy negatywnie na poziom cynku w organizmie?

4. Jakiego typu dieta posiada duże ilości cynku w formie związków chelatowych, co obniża jego biodostępność?

5. Ile wynosi zalecana dawka dzienna cynku dla dzieci w wieku od 1 - 10 lat?

6. Ile wynosi zalecana dawka dzienna cynku dla dzieci w wieku od 11 - 18 lat?

7. Ile wynosi zalecana dawka dzienna cynku dla dorosłych?

8. W jakim przedziale zawiera się dawka terapeutyczna cynku?

9. Czy mleko matki jest bogatym źródłem cynku?

10. Czy problem niedoboru cynku jest problemem globalnym?
11. Czym są fityniany?
12. Czy istnieją jakieś biomarkery niedoboru cynku?
13. Wymień pierwsze objawy niedoboru cynku.
14. Do czego mogą prowadzić duże braki cynku?
15. Czy istnieje jakiś związek pomiędzy wystąpieniem biegunki a niedoborem cynku?
16. Która witamina nie jest przyswajalna przy niedoborze cynku?
17. Rozwiń łańcuchowy termin medyczny „dermatitis enteropathica”
18. Do jakich chorób gruczołu krokowego może dojść w przypadku dużych braków cynku?
19. Czym jest zespół Brandta/Zespół Danbolta-Clossa?
20. Wymień choroby, którym może towarzyszyć niedobór cynku.

7.3. Bibliografia i literatura uzupełniająca

ALLEN, JOHN I.; KAY, NEIL E.; MCCLAIN, CRAIG J. Severe zinc deficiency in humans: association with a

HO, Emily; COURTEMANCHE, Chantal; AMES, Bruce N. Zinc deficiency induces oxidative DNA damage and increases p53 expression in human lung fibroblasts. The Journal of nutrition, 2003, 133.8: 2543-2548.

OTEIZA, Patricia L.; OLIN, Katherine L.; FRAGA, Cesar G. Zinc Deficiency Causes Oxidative Damage to Proteins, Lipids and DNA in Rat Testes1'2'3. 1995.

SJÖGREN, ANDERS; FLORÉN, CLAES-HENRIK; NILSSON, ÅKE. Magnesium, potassium and zinc deficiency in subjects with type II diabetes mellitus. Acta Medica Scandinavica, 1988, 224.5: 461-466.

TUCKER, Howard F.; SALMON, W. D. Parakeratosis or zinc deficiency disease in the pig. Experimental Biology and Medicine, 1955, 88.4: 613-616.

Toksyczność cynku

8.1. Informacje wstępne

Cynk jest praktycznie nietoksyczny dla organizmów żywych. Pierwiastek ten nie wykazuje działania cytotoksykowego, rakotwórczego, mutagennego oraz teratogennego (z wyjątkiem podawania dootrzewnowo szczurom ciężarnym w dawce 20 mg/kg m.c.). Nie kumuluje się w organizmie, a jego nadmierne spożycie powoduje zmniejszone wchłanianie i zwiększone wydalanie. Niemniej jednak istnieją udokumentowane przypadki ostrego i przewlekłego zatrucia.

8.2. Narażenie na cynk i jego związki

Do środowiska cynk uwalniany jest głównie przez emisję w postaci pyłów z hut cynku, wokół których
stężenie w glebie osiąga wartość: 10 – 80 mg/kg. Jednakże źródłem tego metalu w środowisku może być również nierozważna gospodarka człowieka związana z paliwami i odpadami komunalnym. O ile wpływ na poziom emisji cynku, związanego ze spalaniem węgla, ropy naftowej i jej produktów wydaje się być praktycznie niemożliwy to istnieją inne źródła zanieczyszczeń, na które człowiek może potencjalnie wpływać. Do takich źródeł należą: spalanie stałych odpadów komunalnych, które to wprowadzają do powietrza aglomeracji miejskiej ok. 75% tego metalu; ścieki komunalne, zawierające duże ilości tego pierwiastka oraz zwałowiska odpadów górniczych i przemysłowych, które często przedostają się do wód gruntowych.

Najczęściej ekspozycja na tlenek cynku jest związana z emisją dymów tego tlenku z kominów hut metali. W atmosferze tlenek cynku występuje głównie w postaci aerozolu o wymiarach cząstek ok. 1 mm. W związku z takimi rozmiarami cząstek, tlenek ten zostaje zatrzymany w górnych drogach oddechowych.

Stężenie fizjologiczne cynku w krwi, osoczu, i surowicy oraz stężenie w moczu nie wykazuje istotnych różnic w porównaniu ze stężeniami stwierdzonymi u osób narażonych na tlenek cynku, w związku z tym wskaźniki te nie są przydatne do oceny narażenia.
8.3. Mechanizm działania toksycznego

Cynk w organizmach zwierzęcych współdziała w procesach metabolicznych z miedzą, żelazem oraz wapniem. Powoduje różne zaburzenia w układzie krążenia, może także powodować zaburzenia psychiczne. Prawdopodobnie jedną z najważniejszych przyczyn toksyczności cynku u człowieka i zwierząt mogą być zaburzenia metabolizmu metali niezbędnych dla organizmu człowieka pod wpływem tego metalu. Literatura podaje również, iż nadmierne spożycie cynku zaburza wchłanianie miedzi, prawdopodobnie przez indukcję metalotioneiny, która ma większe powinowactwo do miedzi niż do cynku. W konsekwencji więcej wiąże się z metalotioneiną miedzi, która jest wydalana z organizmu.

8.4. Zatrucia ostre

Ostra toksyczność cynku, spowodowana przedawkowaniem jest rzadkością, pierwsze przypadki zatrucia tym metałem opisano w 1964 r. i wynikały ze spożycia produktów żywnościowych, przechowywanych w ocynkowanych puszkach. U pacjentów, którzy spożywali napoje, przechowywane w ocynkowanych puszkach, zaobserwowano zaburzenia ze strony przewodu pokarmowego.

Cynk w stężeniu powyżej 1 g / kg mc. wywołuje zahamowanie wzrostu oraz zmniejszenie masy ciała u zwierząt domowych. U ludzi narażonych na długotrwałe działanie pyłu cynkowego i tlenku cynku, obserwuje się

Uważa się, że narażenie zawodowe na cynk nie powoduje zwiększonego występowania działania kancerogennego. U szczurów zaobserwowano natomiast zwiększoną aberrację chromosomów w komórkach szpiku kostnego po narażeniu inhalacyjnym na tlenek cynku przy stężeniu: 0,1 – 0,5 mg·L⁻¹.

Cynk działa na mózg w dwojaki sposób. Metal ten jest, jak już wspomniano, istotnym kofaktorem wielu enzymów i białek, a jego niedobór może zmieniać aktywność enzymów antyoksydacyjnych Cu-Zn - SOD, co w efekcie powoduje nadmiar wolnych rodników, które są szkodliwe dla błon komórkowych. Cynk może również działać, jako neuroprzekaźnik dla prawidłowego funkcjonowania mózgu (tzw. cynk synaptyczny). Metal ten moduluje rozpuszczalność β-amyloidu (kwasochłonnego, nierozpuszczalnego białka fibrylnego) w mózgu i chroni przed jego toksycznością, ale nadmiar tego metalu może
być z kolei przyczyną śmierci komórek nerwowych, która jest niezależna od toksycznego wpływu β-amyloidu.

Do zatruć cynkiem dochodzi głównie po spożyciu owoców lub warzyw, opryskiwanych preparatami cynkowymi lub produktów przechowywanych w naczyniach cynkowanych. Z kolei, zwierzęta narażone są na przypadkowe spożycie fosforu cynku (ZnP₂), który stosowany jest jako trutka na szczury. Fosforek cynku w warunkach wilgotnych rozkłada się, dając bardzo trującą substancję - wodorotlenek fosforu. Wdychanie par tego związku powoduje bóle głowy, mdłości, wymioty i biegunkę, a w cięższych przypadkach utratę przytomności oraz skurcze. Śmierć może nastąpić wskutek niewydolności sercowo-naczyniowej lub obrzęku płuc.

Spożycie dużych ilości mleka i serów może zmniejszyć wchłanianie cynku w przewodzie pokarmowym ze względu na wysoki poziom fosforu i wapnia obecnych w tych produktach spożywczych. By zmniejszyć stężenie cynku w organach zaleca się podawanie: CaNa₂-EDTA lub Dimerkaprolu (BAL – z ang. British Anti-Lewisite) - działanie chelatujące.

Na ostrą toksyczność soli nieorganicznych cynku (np. chlorku cynku) drogą inhalacyjną mogą być narażeni żołnierze z powodu wykorzystywania tego związku w "świecach dymnych". W tym przypadku można zaobserwować: uszkodzenia błony śluzowej, zwłóknienia płuc, obrzęk błony śluzowej oskrzeli oraz owrzodzenie.
8.5. Zatrucia przewlekłe

Uważa się, iż związki cynku, podawane doustnie, są mało toksyczne – na przykład dawka toksyczna (LD$_{50}$) chlorku cynku dla myszy, szczura i świnki morskiej wynosi: 200 – 300 mg/kg m.c. Z kolei wdychanie świeżo wytworzonych dymów zawierających tlenuk cynku w stężeniu powyżej 15 mg·m$^{-3}$ powoduje wystąpienie choroby przypominającej grypę – tzw. „gorączkę odlewników”. Mechanizm powstania tej choroby nie jest wyjaśniony, jednakże przypuszcza się, iż małe cząsteczki tlenuku cynku, o średnicy mniejszej niż 0,4 μm, wnikają do pęcherzyków płucnych oraz krwi i tworzą z białkami krwinek białych związki o właściwościach pirogennych (powstawanie gorączki). Objawy chorobowe pojawiają się nagle, zwykle od 4 do 12 h po zakończeniu ekspozycji i mogą wystąpić nawet po pierwszym kontaktie z dymami. Choroba może objawiać się: podrażnieniem górnych dróg oddechowych, bółami: głowy, stawów, mięśni oraz uczuciem osłabienia. W następnej kolejności pojawia się wysoka gorączka, zwiększa się liczba krwinek białych, dreszcze, poty oraz ból w klatce piersiowej. Objawy ustępują samozinstnie od jednego do dwóch dni. Interesującym aspektem tego dziwnego, ale nie śmiertelnego działania, jest odporność, która pojawia się u osobników poddanych ekspozycji, ale która zanika po jednym lub dwóch dniach bez ekspozycji.
8.6. Leczenie zatruć cynkiem

W przypadku zatruć cynkiem można stosować kilka metod leczenia: dekontaminację, stosowanie związków chelatujących jony cynku, czy leczenie podtrzymujące stany życiowe.

Jeśli chodzi o dekontaminację, to stosuje się ją głównie w przypadkach polania oczu lub skóry roztworami soli tego metalu (chlorku/octanu). Ponieważ związki te wykazują dużą higroskopijność, polana skóry/tkanka wymaga natychmiastowej interwencji w postaci przemywania dużą ilością soli fizjologicznej. Z kolei w zatruciach pokarmowych, zabiegi takie jak płukanie żołądka, podawanie węgla aktywnego są często zbędne, gdyż zazwyczaj pacjent wcześniej „pozbył się” związków cynku przez ich zwymiotowanie.

Leczenie może wymagać również stosowania odpowiednich związków chelatujących, aby uniknąć ewentualnej możliwości wewnątrzkomórkowej toksyczności cynku. Dane kliniczne, dotyczące tego postępowania, są ograniczone. Jednym z dokładnie opisanych przypadków zatrucia chlorkiem cynku jest przypadek szesnastoletniego chłopca, któremu po 74 h od zatrucia tą solą podano odczynniki chelatujące takie jak CaNa$_2$-edta lub BAL. Pomimo poprawy stanu zdrowia w ciągu 24 h, eliminacja cynku z moczem nie była znacznie zaobserwowana.

Prowadzone są również eksperymenty zwierzęce nad możliwością zastosowania innych związków chelatujących niż wymienione wcześniej, są to: DTPA –
dietylenotriamino-pentaocutan (ang. diethylenetriamine-pentaacetic acid) oraz CDTA – kwas 1,2-diaminocykloheksano-N,N,N',N'-czterooctowy (ang. cyclohexanedi-aminetetraacetic acid). Związki te charakteryzują się lepszą zdolnością do chelatowania jonów cynku w porównaniu do CaNa$_2$-edta, czy dimerkaprolu. Jednakże dane potwierdzające skuteczność stosowania obu wymienionych związków są znikome. Potencjalnie właściwym środkiem, który wykazuje bardzo dobre działanie na szczurach jest N-acetylocysteina, w przypadku, której zaobserwowano znaczną wydalanie cynku z moczem. Drugim badanym preparatem była D-penicloamina, która jednakże zwiększyła śmiertelność wśród grupy kontrolnej szczurów, stąd stosowanie jej jako skuteczny środek chelatujący wydaje się zbyt niebezpieczne.

W przypadku zatruczy enzymatycznych związkami cynku konieczne jest zwrócenie uwagi na równowagę elektrolitową. Pacjenci z przypuszczeniem zatrucia drogą enzymatyczną powinni być badani endoskopowo z uwzględnieniem możliwości poparzenia przełyku i żołądka w przypadku spożycia związków takich jak 20-25% roztwory soli cynku (np. chlorku cynku).

8.7. Pytania kontrolne

2. Czy cynk kumuluje się w organizmie?
3. Co następuje w przypadku nadmiaru cynku w organizmie?

4. Jakie są główne źródła przedostawania się cynku do środowiska?

5. Podaj zakres stężeń cynku w glebie odnotowywany w pobliżu hut metali.

6. Wymień źródła cynku wynikające z nierozważnej gospodarki człowieka.

7. W jaki sposób spalanie stałych odpadów komunalnych wpływa na wprowadzanie cynku do środowiska?

8. Co jest najczęstszym źródłem tlenku cynku w powietrzu?

9. Wymień te czynniki związane ze źródłami cynku w powietrzu, na które wpływ ma człowiek.

10. Czy tlenek cynku zostaje zatrzymywany w górnych drogach oddechowych?

11. Czy stężenie fizjologiczne cynku w krwi, osoczu i surowicy oraz stężenie w moczu wykazuje istotne różnice w porównaniu ze stężeniami stwierdzonymi u osób narażonych na tlenek cynku?

12. Wymień metale, z którymi cynk w organizmach zwierzęcych współdziałła w procesach metabolicznych.

13. Podaj jedną z najważniejszych przyczyn toksyczności cynku.
14. Dlaczego nadmiar cynku w ustroju zaburza wchłanianie miedzi?

15. Czy ostra toksyczność cynku występuje często?

16. Podaj okoliczności ostrego zatrucia cynku opisanego po raz pierwszy literaturze.

17. Przy jakim stężeniu cynku dochodzi do zahamowania wzrostu oraz zmniejszenia masy ciała u zwierząt domowych?

18. Wyjaśnij pojęcie „gorączka odlewników”.

20. Gdzie i w jakiej postaci gromadzi się początkowo wchłonięty cynk?

21. W jakiej postaci transportowany jest cynk w osoczu?

22. Czy narażenie zawodowe na cynk powoduje zwiększone występowanie działania kancerognennego?

23. Podaj konsekwencje tego, że cynk jest istotnym kofaktorem wielu enzymów i białek, a jego niedobór może zmieniać aktywność enzymów antyoksydacyjnych Cu-Zn – SOD.

24. Wyjaśnij pojęcie „cynk synaptyczny”.

25. Jaki jest związek pomiędzy β-amyloidem a cynkiem?

26. W jakich okolicznościach może dojść do zatrucia cynkiem poprzez spożycie owoców lub warzyw?
27. W jakiej postaci chemicznej występuje cynk w trutce na szczury?
28. Jaki jest mechanizm działania fosforku cynku?
29. Jakie są objawy zatrucia fosforkiem cynku?
30. Dlaczego spożycie dużych ilości mleka i serów może zmniejszyć wchłanianie cynku w przewodzie pokarmowym?
31. Podaj przykłady substancji chelatujących, które mogą obniżyć poziom tego metalu w organizmie.
32. Dlaczego na ostrą toksyczność nieorganicznych soli cynku mogą być narażeni żołnierze?
33. Podaj objawy ostrego zatrucia chlorkiem cynku w przypadku jego zastosowań wojskowych.
34. W jaki sposób można wyjaśnić patomechanizm „gorączki odlewników”?
35. Co jest interesującego pod względem układu odpornościowego w gorączce odlewników?
36. Jak wygląda postępowanie w przypadku polania oka lub skóry roztworem soli cynku (chlorku/octanu)?
37. Jak wygląda postępowanie w przypadku doustnego zatrucia solami nieorganicznymi cynku?
38. Opisz przypadek kliniczny zastosowania odczynników chelatujących podczas zatrucia doustnego nieorganicznymi solami cynku.
39. Wymień związki chelatujące w stosunku do których
prowadzone są badania nad zastosowaniem w leczeniu zatruć nieorganicznymi solami cynku.

40. Dlaczego w przypadku zatruć doustnych związkami cynku konieczne jest zwrócenie uwagi na równowagę elektrolitową?

8.8. Bibliografia i literatura uzupełniająca

MIYABE, Shinji; IZAWA, Shingo; INOUE, Yoshiharu. Expression of ZRC1 coding for suppressor of zinc toxicity is induced by zinc-starvation stress in Zap1-dependent fashion in Saccharomyces cerevisiae. Biochemical and biophysical research communications, 2000, 276.3: 879-884.

ROUT, Gyana Ranjan; DAS, Premananda. Effect of metal toxicity on plant growth and metabolism: I. Zinc. In:

Rola cynku w depresji

9.1. Czym jest depresja?

Depresję można zdefiniować jako stan obniżonego nastroju, który jest nieadekwatny do życiowych okoliczności, a tym samym nieuzasadniony i który ostatecznie prowadzi do zaburzenia całej sfery afektywnej. Depresja wpisuje się do najczęstszych zaburzeń psychicznych (ok. 10% populacji), a liczba zachorowań wskazuje na stałą tendencję wzrostową. Z uwagi na to, że wiele objawów depresyjnych jest uznawanych za normę, ten stan chorobowy jest rzadko rozpoznawany i leczony. Prawidłowe rozpoznanie i leczenie depresji jest bardzo ważne z uwagi na fakt, iż zaburzenia depresyjne związane są z ogromnym cierpieniem pacjenta oraz jego otoczeniem. Oprócz tego, stany depresyjne powodują zmniejszenie aktywności zawodowej, towarzyskiej, wypadanie z ról życiowych,
a w najgorszym przypadku prowadzą do aktów samobójstwa (15 – 25%). Z uwagi na różnorodne uwarunkowania natury biologicznej, psychologicznej oraz społecznej związane są z zaburzeniami depresyjnymi, choroba ta charakteryzuje się wieloczynnikową etiologią. Dawniej stosowany podział na różne postacie depresji takie jak:

- objawowa;
- organiczna;
- neurotyczna/nerwicowa;
- endogenna;
- reaktywna.

został odrzucony ze względu na to, iż często nie jest możliwe jednoznaczne ich zróżnicowanie. Ze względu na liczbę oraz nasilenia objawów można wyróżnić depresję stopnia:

- lekkiego;
- średniego;
- ciężkiego.

Z kolei dla różnicującej terapii farmakologicznej znaczenie mają zespoły depresyjne takie jak:

- Zespół depresyjny z zahamowaniem napędu i apatią - charakteryzujący się zmęczeniem, utratą
energii;

- Depresja psychotyczna (urojeniowa) z urojeniami zubożenia i winy oraz czasem;
- Z omamami i myśleniem typu paranoidalnego;
- Depresja starcza - która wyróżnia się występowaniem objawów lęku i objawów paranoidalnych – oprócz zaburzeń wegetatywnych oraz funkcji poznawczych;
- Depresje sezonowe - które występują jedynie w miesiącach zimowych (między listopadem a marcem) wynikają ze zmniejszonego nasłonecznienia;
- Depresyjne osłupienie, przy którym pacjent nie jest już zdolny do kontaktu ze swoim otoczeniem;
- Depresja lękowa z pobudzeniem ruchowym – w tym przypadku dominują stany niepokoju, lęk i lękliwość;
- Depresja maskowana - ujawnia się w objawach somatycznych, takich jak bóle serca, poczucie rozbicia czy dolegliwości gastryczne.

9.2. Rola cynku w patofizjologii depresji

Jednym z czynników, mogących wpływać na powstawanie zaburzeń depresyjnych oraz ich leczenie, może być endogennie występujący cynk. Stanom
niedoboru tego pierwiastka (poza objawami somatycznymi oraz neurologicznymi), towarzyszą liczne objawy psychopatologiczne, z których znaczna część pokrywa się z objawami depresji. Zjawiska te w sposób pośredni mogą sugerować o udziale zaburzeń gospodarki cynkowej w generowaniu objawów depresji oraz udziału tego pierwiastka w patofizjologii oraz terapii zaburzeń depresyjnych. Często jednak dane te nie są jednoznaczne, a nawet ze sobą sprzeczne. Hipotezy sugerujące rolę cynku w patofizjologii i terapii depresji, opierają się przede wszystkim na wieloaspektowym zaangażowaniu tego pierwiastka w regulację aktywności układów neuroprzekaźnikowych aminokwasów pobudzających i hamujących, jak i również powiązane są ze zjawiskiem plastyczności neuronalnej.

Jak już wspomniano udział zaburzeń gospodarki cynkowej w generowaniu objawów depresji oraz zaangażowanie tego pierwiastka w patofizjologii i patomechanizmie depresji zaburzeń depresyjnych jest wysoce prawdopodobne. Deficyt tego pierwiastka ma wpływ na jego homeostazę w mózgu oraz może prowadzić do:

- zmian zachowań;
- zmian w uczeniu się;
- zmian w funkcjonowaniu psychicznym;
- podatności na epilepsję.
W literaturze fachowej można znaleźć informacje związane z tym, że w czasie depresji osobom cierpiącym na ten stan chorobowy, towarzyszy niższy poziom tego pierwiastka w ustroju. Stąd, przeprowadzone badania na ludziach oraz zwierzętach potwierdziły przypuszczenia, że podawanie preparatów cynkowych umożliwia modulację depresji. Oprócz tego, badania kliniczne wykazały korzyści z suplementacji cynku w terapii przeciwdepresyjnej. Wynika to z tego, że zaobserwowano zależność między podawanymi dawkami tego pierwiastka a symptomami depresji. Ponadto, eksperyment zwierzęcy na populacji myszy wykazał, że zmniejszenie stężenia cynku w ustroju wywołuje objawy depresji. Związek między deficytem cynku oraz objawami depresji jest nieznany, istnieje jednak kilka hipotetycznych mechanizmów, które mogą to wyjaśnić.

Jeden z tych mechanizmów obejmuje układ immunologiczny. Zawsze depresja była kojarzona z obniżeniem mechanizmów obronnych organizmu. Badania dotyczące tego zagadnienia (lata 80-te) dostarczały prawie wyłącznie dowodów świadczących o upośledzeniu pewnych parametrów odporności typu komórkowego - odporności zależnej głównie od limfocytów T oraz komórek NK (ang. natural killer). Badania z lat 90-tych przyniosły szereg prac wyników o patologicznej aktywacji odpowiedzi pozapalnej oraz autoimmunologicznej i szeregu niebadanych wcześniej parametrów odpowiedzi typu komórkowego. Najnowsze badania wskazują, że cynk jest niezbędny do regulacji hormonów i komórkowej odpowiedzi układu immunologicznego, które
mogą odgrywać ważną rolę w patofizjologii tego stanu chorobowego. Suplementacja cynku u ludzi była związana ze znacznym zmniejszeniem stężenia wielu markerów stanu zapального, takich jak: białka C-reaktywne, interleukiny-6 oraz czynnik martwicy nowotworu (TNF-α). Aktywacja tych markerów stanu zapального była związana z objawami depresji. Typowym biomarkerem stanu zapального jest spadek poziomu cynku w surowicy krwi. Jak już wcześniej wspomniano wiele badań wykazało, że osoby cierpiące na depresję charakteryzują się obniżonym poziomem cynku w surowicy krwi. Problematyczne jest na obecnym poziomie wiedzy rozstrzygnąć, czy spadek poziomu tego metalu wyprzedza w czasie pojawienie się epizodu depresji, czy też jest jej wynikiem. Interesującą obserwacją jest fakt, iż z szeregiem parametrów świadczących o patologicznej immunoaktywacji, związana jest statystycznie znamienna korelacja obniżonego poziomu cynku.

Z drugiej strony, badania czynników demograficznych wykazały statystycznie znamienną negatywną korelację z wiekiem pacjentów oraz nasileniem epizodu depresyjnego ocenianego skalą Hamiltona. Inne badania wiązające wiele innych czynników z depresją doprowadziły do następujących obserwacji:

- anoreksja lub utrata wagi nie jest przyczyną obniżonego poziomu cynku u osób cierpiących na depresję;
- nie ma korelacji między płcią, ilością i długotrwałością poprzednich epizodów depresji,
paleniem papierosów, aktywacją osi HPA a poziomem Zn.

Przedstawione dotychczas informacje spowodowały wysunięcie dwóch hypotez tłumaczących obniżony poziom cynku w surowicy krwi osób chorych na depresję:

I. spadek poziomu albuminy;

II. nadmierny wychwyt cynku z krwioobiegu przez syntetyzowane w wątrobie metalotioneiny.

Ponieważ spadek poziomu albuminy, jak i stymulowana cytokinami prozapalnymi (IL-1, IL-6) synteza metalotionein jest typowym objawem stanu zapalnego - stąd wynika, że spadek poziomu Zn jest zjawiskiem wtórnym, wynikiem toczącego się u osób chorych na depresję stanu zapalnego o nieznanej etiologii.

Trzeci mechanizm związany jest z tym, że receptory NMDA (receptory N-metylo-D-asparaginianu) mogą być zaangażowane w patofizjologię i leczenie depresji, gdyż hamowanie tych receptorów w zwierzęcych modelach depresji naśladuje działanie leków przeciwdepresyjnych. Z uwagi na to, że cynk jest modulatorem ośrodковego układu nerwowego, to jego rola polega na inhibicji aktywności receptorów dla kwasu glutaminowego, głównie jonotropowych receptorów NMDA. Cynk jest magazynowany wraz z kwasem glutaminowym w pęcherzykach synaptycznych, a po uwolnieniu do synapsy wiąże się w części postsynaptycznej z modulacyjnym miejscem kompleksu receptora NMDA, hamując jego funkcję.

Jak już wcześniej wspomniano, bogatym w cynk regionem mózgu jest hipokamp (łac. hippocampus) - róg Amona (Cornu Ammonis), szczególnie obszar włókien mszystych hipokampa. Stężenie cynku w hipokampie kiedyś wyznaczane było przy zastosowaniu histochemicznej metody barwienia, tzw. metody Timma, która wybiórczo barwi włókna zawierające jony Zn$^{2+}$.

9.3. Pytania kontrolne

1. W jak sposób można zdefiniować depresję?
2. Jaką pozycję posiada depresja na tle zaburzeń psychicznych?
4. Dlaczego prawidłowe rozpoznanie i leczenie depresji jest tak ważne?

5. Jaki wpływ mają stany depresyjne na codzienne funkcjonowanie ludzi?

6. Jaki jest związek pomiędzy depresją a samobójstwami?

7. Z uwagi na jakie czynniki depresja charakteryzuje się wieloczynnikową etiologią?

8. Wymień dawniej stosowany podział depresji?

9. Dlaczego dawniej stosowany podział depresji został odrzucony?

10. Wyszczególnij podział depresji ze względu na liczbę oraz nasilenia objawów.

11. Jakie znaczenie mają zespoły depresyjne w różnicującej terapii farmakologicznej?

12. Czym charakteryzuje się zespół depresyjny z zahamowaniem napędu i apatią?

13. Czym jest depresja starcza?

14. Czym się charakteryzują depresje sezonowe?

15. Czym charakteryzuje się depresyjne osłupienie?

16. Jakie stany dominują w przypadku depresji lękowej z pobudzeniem ruchowym?

17. Kiedy ujawnia się depresja maskowana?

18. Jakie objawy towarzyszą deficytowi cynku oprócz objawów somatycznych oraz neurologicznych?
19. Na czym głównie opierają się hipotezy sugerujące rolę cynku w patofizjologii i terapii depresji?

20. Do jakich zmian behawioralnych może prowadzić zaburzenie homeostazy cynku w mózgu?

21. Czy podawanie preparatów cynkowych umożliwia modulowanie depresji?

22. Na podstawie czego stwierdzono, że zmniejszenie stężenia cynku w ustroju wywołuje objawy depresji?

23. Jakie dowody dostarczyły badania z lat 80-tych w zakresie związku między układem immunologicznym a depresją?

24. Jakie dowody dostarczyły badania z lat 90-tych w zakresie związku między układem immunologicznym a depresją?

25. Jakie informacje dostarczają współczesne badania w zakresie związku między układem immunologicznym a depresją?

26. Czy spadek poziomu cynku wyprzedza w czasie pojawienie się epizodu depresji, czy też jest jej wynikiem?

27. Co wykazały badania czynników demograficznych w odniesieniu do związku cynku z depresją?

28. Czym jest skala Hamiltona?

29. Czy anoreksja jest przyczyną obniżonego poziomu cynku u osób cierpiących na depresję?

30. Czy utrata wagi jest przyczyną obniżonego
poziomu cynku u osób cierpiących na depresję?

31. Czy istnieje korelacja między płcią, ilością i długotrwałością poprzednich epizodów depresji, paleniem papierosów, aktywacją osi HPA a poziomem cynku.

32. Podaj dwie hipotezy tłumaczące obniżony poziom cynku w surowicy krwi osób chorych na depresję.

33. Z czym jest związany fakt, iż spadek poziomu cynku jest zjawiskiem wtórnym, wynikiem toczącego się u osób chorych na depresję stanu zapalnego o nieznanej etiologii?

34. Dlaczego zaburzenie układu neurohormonального podwzgórza – przysadka – nadnercza (HPA) odgrywają istotną rolę w depresji?

35. Wyjaśnij akronim „NMDA”

36. Dlaczego receptory NMDA (receptory N-metylo-D-asparaginianu) mogą być zaangażowane w patofizjologię i leczenie depresji?

37. W jaki sposób cynk synaptyczny oddziałuje z receptorem NMDA?

38. Czym jest hipokamp?

39. Czym jest róg Amona?

40. Czym jest metoda Timma?
9.4. Bibliografia i literatura uzupełniająca

MAES, Michael, et al. (Neuro) inflammation and neuroprogression as new pathways and drug targets in depression: from antioxidants to kinase inhibitors.
Progress in neuro-psychopharmacology and biological psychiatry, 2011, 35.3: 659-663.

NOWAK, Gabriel, et al. Effect of zinc supplementation on antidepressant therapy in unipolar depression: a

NOWAK, GABRIEL. Does interaction between zinc and glutamate system play a significant role in the mechanism of antidepressant action?. Acta poloniae pharmaceutica, 2001, 58.1: 73-75.

SZEWCZYK, Bernadeta; KATA, Renata; NOWAK, Gabriel. Rise in zinc affinity for the NMDA receptor evoked by chronic imipramine is species-specific. Polish journal of pharmacology, 2001, 53.6: 641-646.

SZEWCZYK, Bernadeta; KUBERA, Marta; NOWAK, Gabriel. The role of zinc in neurodegenerative inflammatory pathways in depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35.3: 693-701.

Bibliografia

CASTELLANO, Maurizio; MATIJEVIC, Egon. Uniform colloidal zinc compounds of various morphologies.
Chemistry of Materials, 1989, 1.1: 78-82.

CHISHOLM, Malcolm H.; GALLUCCI, Judith; PHOMPHRAI, Khampee. Coordination chemistry and reactivity of monomeric alkoxides and amides of magnesium and zinc supported by the diiminato ligand CH (CMeNC6H3-2, 6-iPr2) 2. A comparative study. Inorganic chemistry, 2002, 41.10: 2785-2794.

COREY, Robert B.; WYCKOFF, Ralph WG. The crystal structure of zinc hydroxide. Zeitschrift für Kristallographie-Crystalline Materials, 1933, 86.1: 8-18.

COUSINS, Robert J.; MCMAHON, Robert J. Integrative aspects of zinc transporters. The Journal of nutrition, 2000, 130.5: 1384S-1387S.

DEMEL, Jan, et al. Layered zinc hydroxide salts:

FRAKER, Pamela J.; HAAS, Suzanne M.; LUECKE, Richard W. Effect of zinc deficiency on the immune

GRZECHNIK, Z. Historia dotychczasowych poszukiwań i eksploatacji. W: Poszukiwanie rud cynku i ołowiu na

HAASNOOT, Jaap G. Mononuclear, oligonuclear and polynuclear metal coordination compounds with 1, 2, 4-triazole derivatives as ligands. Coordination Chemistry Reviews, 2000, 200: 131-185.

HO, Emily; COURTEMANCHE, Chantal; AMES, Bruce N. Zinc deficiency induces oxidative DNA damage and increases p53 expression in human lung fibroblasts. The Journal of nutrition, 2003, 133.8: 2543-2548.

JAROSIŃSKI, ANDRZEJ; MADEJSKA, LUCYNA. Kompleksowe wykorzystanie surowców powstałych w wyniku procesu pozyskiwania koncentratów cynku. GOSPODARKA SUROWCAMI MINERALNYMI, 2008, 24.

KAISER, Herbert J. Adding alkaline zinc solution to

KRALIK, A.; EDER, K.; KIRCHGESSNER, M. Influence of zinc and selenium deficiency on parameters relating to

LASAT, Mitch M., et al. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi

MACIEJNY, Adolf. Metale i stopy metaliczne oraz ich wpływ na rozwój inżynierii materiałowej w Polsce.

MAES, Michael, et al. (Neuro) inflammation and neuroprogression as new pathways and drug targets in depression: from antioxidants to kinase inhibitors. Progress in neuro-psychopharmacology and biological psychiatry, 2011, 35.3: 659-663.

MCKUBRE, M. C. H.; MACDONALD, D. D. The

MIYABE, Shinji; IZAWA, Shingo; INOUE, Yoshiharu. Expression of ZRC1 coding for suppressor of zinc toxicity is induced by zinc-starvation stress in Zap1-dependent

NGUYEN, Dan-Tam; BU, Xianhui. Sodium zinc hydroxide sulfite with a novel Zn3OH geometry. Inorganic chemistry, 2006, 45.26: 10410-10412.

NOWAK, GABRIEL. Does interaction between zinc and glutamate system play a significant role in the mechanism of antidepressant action?. Acta poloniae pharmaceutica, 2001, 58.1: 73-75.

OLIVEIRA, Ana Paula A., et al. Controlled precipitation of zinc oxide particles at room temperature. Chemistry of

OTEIZA, Patricia L.; OLIN, Katherine L.; FRAGA, Cesar G. Zinc Deficiency Causes Oxidative Damage to Proteins, Lipids and DNA in Rat Testes1'2'3. 1995.

OTT, E. A., et al. Zinc toxicity in ruminants. II. Effect of high levels of dietary zinc on gains, feed consumption and

PASCHKE, Mark W.; PERRY, Laura G.; REDENTE, Edward F. Zinc toxicity thresholds for reclamation forb

PIĄTKOWSKI, J.; BINCZYK, F. Właściwości i zastosowanie odlewniczych stopów Mg-Al. Archives of Foundry, 2002, 2.4

RENGEL, Z.; RÖMHELD, V.; MARSCHNER, H. Uptake of zinc and iron by wheat genotypes differing in tolerance to

SJÖGREN, ANDERS; FLORÉN, CLAES-HENRIK; NILSSON, ÅKE. Magnesium, potassium and zinc deficiency in subjects with type II diabetes mellitus. Acta Medica Scandinavica, 1988, 224.5: 461-466.

STÄHLIN, W.; OSWALD, HANS R. The crystal structure of

STRZYSZCZ, Z. Właściwości fizyczne, fizykochemiczne i chemiczne odpadów poflotacyjnych rud cynku i ołowiu w

SZEWczyk, Bernadeta; KATA, Renata; NOWAK, Gabriel. Rise in zinc affinity for the NMDA receptor evoked by chronic imipramine is species-specific. Polish journal of pharmacology, 2001, 53.6: 641-646.

SZEWczyk, Bernadeta; KUBERA, Marta; NOWAK, Gabriel. The role of zinc in neurodegenerative inflammatory pathways in depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35.3: 693-701.

TARAFDER, M. T. H., et al. Coordination chemistry and bioactivity of Ni 2+, Cu 2+, Cd 2+ and Zn 2+ complexes

TESMER, Markus; SHU, Mouhai; VAHRENKAMP, Heinrich. Sulfur-rich zinc chemistry: new tris (thioimidazolyl) hydroborate ligands and their zinc complex chemistry related to the structure and function of alcohol dehydrogenase. Inorganic chemistry, 2001, 40.16: 4022-4029.

TUCKER, Howard F.; SALMON, W. D. Parakeratosis or zinc deficiency disease in the pig. Experimental Biology and Medicine, 1955, 88.4: 613-616.

WALEWSKA-RIESENKAMPF, W. Zastosowanie amoniakalnej metody ługowania do przeróbki krajowych rud galmanowych o niskiej zawartości cynku. Prace IH, 1959, 1 s 118.

116.2: 312-333.

ZHAI, Quan-Guo, et al. Construction of Cd/Zn (II)-1, 2, 4-triazolate coordination complexes via changing substituents and anions. Crystal growth & design, 2006, 6.9: 2126-2135.

Wydawnictwo Scientiae et Didactics przekazuje Czytelnikom pierwszą w Polsce monografię, w której przedstawiono dogłębný opis różnorodnych zagadnień związanych z cynkiem. W pracy zawarto bardzo wiele informacji na temat cynku jako pierwiastka i jego związków, sposobów identyfikacji i oznaczania jak i również aspektów biochemicznych. Monografia ta została napisana przez naukowców z Wydziału Chemii Uniwersytetu Jagiellońskiego w Krakowie.

Książka adresowana jest zarówno do studentów wydziałów chemicznych, biologicznych, biochemicznych, farmaceutycznych, lekarskich, nauk o zdrowiu uniwersytetów oraz, a także innych kierunków stykających się z opisywanymi tematami dotyczącymi różnorodnych aspektów cynku.

ISBN
978-83-941637-5-4

www.scientiaeetdidactics.wordpress.com